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Abstract

The importance of field heterogeneities in ground-water pollution problems has been widely recognized during the last
few decades. To address the impact of field heterogeneities on ground-water flow and solute transport, many different
stochastic methods have been developed. Among all these stochastic methods kriging is the most popular one used by many
practitioners to interpolate and extrapolate measured transmissivity data. However, hydraulic head measurements are
generally more abundant than transmissivity data. Therefore, the cokriging technique which utilizes both the head and
transmissivity measurements to estimate transmissivity and/or hydraulic head distributions has also received much attention
in recent years.

Classical cokriging relies on a linear predictor approach and uses covariance and cross covariance functions derived
from a first-order approximation. Consequently, it often results in head and transmissivity fields that can produce
unacceptable velocity distributions. In this paper, we develop an iterative method which combines classical cokriging and a
numerical flow model to obtain optimum estimates of transmissivity and head distributions and to alleviate the limitations of
classical cokriging. Through several numerical examples, we demonstrate that this method is superior to the classical
cokriging method in terms of producing mass conservative velocity fields. In addition, results of the study also indicate that
hydraulic head measurements can improve for our prediction of ground-water flow directions and paths in aquifers

significantly.

Introduction

Geologic formations are inherently heterogeneous.
Importance of the heterogeneity in the transport of contam-
inants in porous media has been the focus of research during
the last two decades. Yeh (1992) provided an overview of
several stochastic approaches developed in the last few years
for modeling solute transport in heterogeneous aquifers and
classified them into two categories: homogeneous (effective
parameters) and heterogeneous approaches.

The effective parameter approach assumes that the
heterogeneous geologic formation can be homogenized to
obtain effective parameters with which one can predict the
ensemble behavior of the flow and transport processes.
Examples of such studies include those by Gelhar and
Axness (1983), and Dagan (1988) for saturated porous
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media, and Yeh et al. (1985a, b, and ¢) and Mantoglou and
Gelhar (1987a, b, and c), among others for unsaturated
media. Although these studies have contributed to a better
understanding of flow and transport in heterogeneous
aquifers, the major drawback of this approach is that it
predicts only the ensemble behavior of the aquifer, which
can be quite different from that of the particular realization
we encounter in reality.

The heterogeneous approach is designed to consider
the nature of spatial variability of hydrologic properties of
the aquifer with a limited amount of data. Methods in this
approach generally consist of geostatistics, Monte Carlo
simulation, and conditional simulation.

Geostatistics is a mathematical interpolation and
extrapolation tool which uses the spatial statistics of the
data set (e.g., aquifer hydraulic property) to estimate the
property at locations where samples are not available. It
consists of estimation of variograms (spatial statistics) and
kriging. Kriging is the best linear unbiased predictor which
provides the estimates of the property at unsampled loca-
tions but retains the sample values at locations where the
values are known. That is, kriging is a special type of condi-
tional expectation. In the case of simulation of flow in
large-scale aquifers where only a limited amount of hydraulic
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conductivity data are collected, geostatistics is generally
found to be useful (Gutjahr, 1981; and Clifton and Neuman,
1982).

Based on the same principle, cokriging takes advantage
of the spatial cross correlation of two hydrologic variables,
in addition to the spatial correlation of the variable itself, to
predict the value of one or both variables at unsampled
locations. A typical example in ground-water hydrology is
the use of cokriging, based on some head and transmissivity
values at some sample locations, to estimate the unknown
transmissivity and/or hydraulic head values at other loca-
tions (e.g., Ahmed and Marsily, 1993; Kitanidis and
Vomvoris, 1983; Hoeksema and Kitanidis, 1984; Gutjahr
and Wilson, 1989; and Hoeksema and Kitanidis, 1989). The
resultant hydraulic head and transmissivity fields are then
used to simulate the transport of solutes. Since the conduc-
tivity and head values at the locations where samples are not
available are estimated by smoothed values analogous to a
conditional expectation, the effect of variability around the
expected value on solute transport is neglected. Therefore,
the uncertainty associated with the predicted concentration
field cannot be addressed. However, by eliminating the
determination of the uncertainty, which requires intensive
computational efforts, the cokriging approach is computa-
tionally economic and is often considered as a more practi-
cal and more realistic approach than the effective parameter
approach.

Although hydraulic head and transmissivity fields
derived from cokriging have been found reasonable, there is
no guarantee that the hydraulic head and transmissivity
estimates satisfy the principle of conservation of mass
because of the linear assumption used in the estimation
procedure. Therefore, these conductivity and head estimates
may produce erroneous velocity fields and, in turn, an
erroneous concentration distribution.

The objective of the paper is to present our newly
developed technique (iterative cokriging-like method) which
combines the use of classical cokriging, a numerical model
for flow, and an iterative scheme to improve our estimates of
transmissivity, hydraulic head, and velocity fields. Several
examples are used to demonstrate the robustness of our new
iterative approach.

Methodology
Classical Cokriging

Detailed discussion of the theory of cokriging can be
found in many literatures (e.g., Marsily, 1986). Here we will
present a brief description. Consider that Z,(x) and Z,(x)
are two correlated second-order stationary random fields
(i.e., transmissivity and hydraulic head, respectively) with
known covariances and means. The estimation of Z, (and
Z,, if necessary) using cokriging is again based on the best,
linear, and unbiased estimator technique. That is,

n m
Z]*(Xo) = ) EI )\UZ](XJ) -+ kZ | Asz2(Xn+k) (l)
J: i

where Z1*(xo) is the estimate of Z, at location Xo, Z1(x;) are
the measured values of Z; at locations xi, X2, . . . Xn.
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Similarly, Z,(xn«) are the measured values of Z; at loca-
tions Xu+1, Xn+2, . . - Xmm. Note that Z; and Z; need not be
measured at the same location. Ay; and Ak are cokriging
weights corresponding to Z; and Z,, respectively.

The minimal variance criterion requires that

E[(Z\*(x0) — Z1(X0))*] = minimal )

Similar to the development of kriging equation, one can
obtain the cokriging system of equations for second-order
stationary processes (Z, and Z.) as follows:

n m
2 )\1jC11(Xi—Xj)+ 2
i=1 k=1

)\ZkCIZ(Xi - Xn+k) — Cll(Xo - Xn) (3)
fori=1,...,nand

n m
) Z )\1jC21(Xn+1 - Xj) + 2

A Coa(Xan — Xk} = Cir2(Xo — Xan) 4)

forl1=1,..., m. The autocovariances of Z, and Z, and cross
covariances between Z, and Z, are denoted by C;; and Cy,,
and Ci; and Cyi, respectively. By solving the system of
equations (3) and (4), the cokriging weights can be obtained.
Then, equation (1) can be utilized to obtain the estimates of
either or both variables at any location.

Prior to the solution of the system of equations, the
autocovariances and cross covariances as functions of the
separation distance have to be known. This information can
be obtained from either field data or some theoretical
analyses. In this study, the autocovariances and cross co-
variances are derived from a perturbation-spectral analysis
of steady ground-water flow in unbounded, two-dimen-
sional, and second-order stationary random transmissivity
field (Mizell et al., 1982).

If we assume that InT (natural log of transmissivity, T)
and hydraulic head, h, are second-order stationary sto-
chastic processes and assume the mean flow is in x; direction
in a two-dimensional aquifer, the spectrum of h under
steady flow in unbounded porous media can be derived to be
(Mizell et al., 1982):
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Sulky, k) = ————
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St(ky, ka) (5)
where Sy is the head spectrum, and Sy is the InT spectrum.
Similarly, the cross spectrum of InT and h can be derived as
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Se(ky, k2) (6)
where Sy 1s the cross spectrum of InT and h, J) is the mean
gradient in x, direction, and k; and k- are the wave numbers
corresponding to x, and x,. Using (5) and (6), the spectrum
of h and the cross spectrum between InT and h can be
obtained if the spectrum, Sy, is given. It should be pointed
out that equations (5) and (6) are first-order approximations
which will deviate from the true solution when the variance
of InT or h becomes large.



In this paper a modified Whittle spectrum function
(Mizell et al., 1982) was used since the spectrum correspond-
ing to an exponential covariance is not stochastically differ-
entiable. The modified Whittle spectrum function takes the
form

200’ (k2 + kJ?)
w(ki’ + k' + &)
The corresponding covariance, the inverse Fourier trans-
form of (7), can be expressed as

e = o[( :—f) K ( Z—f) —~

(Z) x(Z)] ®

where a = m/4\; Ci(£) is the covariance function for InT;
£ denotes the magnitude of the separation distance; of
represents the variance of transmissivity; the correlation
scale is denoted by A; and K and K are the modified Bessel
function of second kind, first order and zeroth order, respec-
tively. Similarly, the covariance of h and the cross covariance
between InT and h can be obtained analytically by taking the
inverse Fourier transform of (7) and (8), respectively. The
program for the classical cokriging used in this study is a
modified version of a Co-simulator of conductivity and
head using a Fast Fourier Transform (COFFT) developed

by Gutjahr et al. (1992).

Se(ky, k2) = 7

lterative Cokriging-Like Method

The head and transmissivity fields obtained using clas-
sical cokriging are, in general, satisfactory for cases where
the perturbations of h and InT are small. However, these
head and transmissivity fields may produce an erroneous
velocity field due to the nature of the first-order approxima-
tion and the linear predictor embedded in classical cokrig-
ing. Similar problems were reported in the conditional simu-
lation of flow and solute transport in heterogeneous porous
media (Harter et al., 1992). In addition, they do not consider
any boundary effects.

To overcome these difficulties, an iterative cokriging-
like method is developed, which combines classical cokrig-
ing, a numerical flow model, and an iterative scheme. A
schematic flow chart, illustrating the algorithm of the itera-
tive approach is given in Figure 1. The first step of this
iterative cokriging-like approach is to generate transmissiv-
ity and head fields using the classical cokriging technique
with some observed transmissivity data [i.e., T*(x;) at
sample locations, x;, where i = 1, n] and observed head
values [h* (xj+.) at sample locations, X+, where j=1,2, ...,
m]. Then, as the second step, the cokriged T field is input to
a two-dimensional numerical model (MMOC?2, Yeh et al.,
1993) for steady-state flow with the observed head values at
the sample location as internal constant-head boundary
conditions. Because of the nonlinear nature of the flow
system, the cokriged head field is treated as a guess solution
to the numerical problem, which allows a rapid convergence
of the numerical solution if an iterative matrix solver is used.

Application of this approach to unsaturated flow problems
shows extremely robust results in terms of CPU time saving
(Harter and Yeh, 1993). Note that the head field obtained
from this numerical solution satisfies specified boundary
conditions and the principle of conservation of mass. There-
fore, the velocity field is well-behaved.

Although the head field, hnew(X), obtained from the
numerical model preserves the measured head values at
sample locations, the influence of the measured head values
on the estimation of the adjacent transmissivity values is not
considered. To incorporate this influence or update the
transmissivity field, at the third step of our iterative
approach, classical cokriging is utilized again to generate
new transmissivity fields, Tn.w(X) based on the measured
transmissivity data [i.e., T*(x;)] and all the head values,
hnew(X), in the flow domain as given conditions. This newly
cokriged transmissivity field, Tuew(X), is then input to the
numerical model to solve for a new head field. Such an
iterative process continues until the maximum change in the
head field is less than a specified tolerance, e. Through the
iteration, the iterative approach incorporates the measured
head and transmissivity values and produces transmissivity
and hydraulic head fields that are consistent with the govern-
ing flow equation. However, one should recognize the fact
that this approach may not be consistent with the statistical
conditional expectation, and we will call our approach an
iterative cokriging-like approach.

Cokrige T and h fields
using T'(x) and h’(x)

to obtain T, and h,

old =

= =

Solve V - (T-Vh)=0 with
internal boundaries h’(x)

Use T'(x) and h,, (x) at all x

for h_,,, ()

to cokrige and obtain
Toew(X)

lf | i"new (X)-holdi <&

No

Fig. 1. A flow chart showing the algorithm of the iterative
cokriging-like method.
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Fig. 2. A schematic sketch of the spatial discretization of the
hypothetical aquifer and the boundary conditions.

Results and Discussion

To demonstrate the performance of our iterative
cokriging-like approach, we generated several hypothetical
two-dimensional heterogeneous aquifers with different
degrees of heterogeneity (measured by o(’, the variance of
InT) and then used them as the real-world analogues. Here
the spectral technique (Gutjahr et al., 1992) was used to
generate the random InT field. Subsequently, head and flow
fields in these hypothetical aquifers were obtained by solv-
ing the flow equation using MMOC2 with specified head
boundary conditions. The resultant head fields were assumed
to represent the “real-world” analogues of the hydraulic
head fields corresponding to the true transmissivity fields.
The hypothetical aquifer is illustrated in Figure 2, which has
16 X 16 square elements with length equal to 0.2. No flow
boundaries were imposed on the upper and lower bound-
aries and constant heads were specified on the left and right
boundaries, creating a mean hydraulic head gradient equal
to 0.05 in the x; direction.

Once the hypothetical aquifer was created and the
corresponding head field simulated, a random sampling
scheme was then employed to determine the sample loca-
tions where transmissivity and head data in the hypothetical
aquifer were collected. Using these transmissivity and head
data sets, classical cokriging and our iterative cokriging-like
approaches were utilized to estimate both the transmissivity
and hydraulic head fields for the entire aquifer. Subse-
quently, the velocity fields were calculated by the applica-
tion of Darcy’s law. Finally, the estimated transmissivity,
hydraulic head, and velocity fields for different degrees of
variability of InT were compared to those of the “real-world”
analogues.

In this paper, four cases are examined. The first three
cases correspond to three levels of degrees of heterogeneities
(ie., of equals 0.25, 2.0, and 4.0 for Cases 1, 2, and 3,
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respectively). Ten observations of InT and 20 observations of
h were used in these three cases. A fourth case (Case 4) was
designed to examine the effect of the number of head mea-
surements. Specifications for Case 4 are identical to those of
Case 2 with the exception that the number of head observa-
tions was increased to 40. For all these four cases, the
correlation scale of the InT field, A (A = 7/ 4}, was assumed
to be five element lengths and to be isotropic. The value of €
(the tolerance level) was set to 0.00001.

Figures 3a, b, and ¢ show the transmissivity field cor-
responding to the real-world analogue, the one estimated by
classical cokriging approach, and one by the iterative
cokriging-like approach, respectively in Case 1. The head
fields corresponding to these transmissivity fields are plotted
in Figures 3d, e, and f. The resultant velocity fields using
these transmissivity and head fields are illustrated in Figures
3g, h, and i. Note that the velocity vector is represented by
arrows and the solid lines represent the stream lines
associated with the velocity field. As illustrated in these
figures, the resultant fields using either classical or the itera-
tive cokriging-like technique are very similar, although
slight differences exist.

Superiority of the iterative cokriging-like technique
becomes apparent when the variance of InT increases.
Figures 4a, b, and ¢ show the transmissivity field cor-
responding to the Case 2 real-world analogue, the one esti-
mated by classical cokriging, and one by the iterative
cokriging-like method, respectively. The corresponding
head and resultant velocity fields are illustrated in Figures
4d, e, and f and Figures 4g, h, and i, respectively. As shown
in Figures 4g, h, and i, the estimated transmissivity and
hydraulic head fields, derived from the iterative cokriging-
like approach, produce a velocity field that is much closer to
the true one than that based on classical cokriging approach.

The robustness of the iterative cokriging-like approach
is even more evident in Figure 5 for Case 3 where the
variance of InT is increased to 4.0. Figure 5h shows that
classical cokriging approach produces an unacceptable
velocity field and thus unacceptable streamlines. This unac-
ceptable velocity field can be attributed to the head covar-
iance and cross covariance functions between InT and h
derived from the perturbation-spectral approach which
relies on the assumption of small perturbations. In addition,
the limitation of the linear predictor approach used by
classical cokriging may augment such a problem. However,
as illustrated in Figure 5i, the resultant velocity field calcu-
lated using the transmissivity and hydraulic head fields
estimated from our iterative cokriging-like approach is satis-
factory in terms of mass conservation and accuracy as com-
pared to the true velocity field (Figure 5g). This is also true
for the head field. Figures 5d, e, and f show that the head
field estimated by the iterative cokriging-like method is
much closer to the true one, compared to that by the classic
approach, even though the same amount of measured head
and transmissivity data were used. Comparisons of the
transmissivity fields estimated by classical cokriging (Figure
5b) and that by the iterative cokriging-like method (Figure
5¢) also reveal some improvements of transmissivity esti-
mates, These improvements are essentially a result of the
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Fig. 3. Comparisons of InT, h, and velocity fields of the reality, and those generated by classical cokriging, and iterative cokriging-like
method, respectively, for Case 1, o> = 0.25. Circles represent the sampling locations of InT or head.

iterative updating of the transmissivity field using the
improved head field from the numerical model.

The result for Case 4 is depicted in Figures 6a through
6i. In this case, the increase of the number of head observa-
tions (from 20 to 40) improves the estimation of the head
and velocity based on the iterative cokriging-like method.
The improvement of the InT fields is not as significant as that

of the head and velocity fields (for comparison, see Figure
4).

Some important aspects of the effect of heterogeneities
on ground-water flow are unveiled by the results of this
study. As expected, cokriging produces smooth transmissiv-
ity fields, omitting small-scale or local heterogeneities, as
compared to the true transmissivity fields. However, the
estimated velocity field based on the smoothed InT field,
regardless of the magnitude of the variance of InT, closely
resembles the true velocity field, implying the effect of local
heterogeneities is negligible in terms of general flow pattern.

37



This phenomenon can be attributed to the fact that local
scale heterogeneity is responsible for local mixing effect (or
dispersion) and thus the distribution of travel times. On the
other hand, the cokriged InT representing the mean values
controls the general flow pattern. This finding seems in good
agreement with our findings in field tracer experiments in
Georgetown, South Carolina (Yeh et al., 1992), which state
that the bulk behavior of the observed three-dimensional
plume appears to be governed by some “important”

Reality

INT Fields

h Fields

Classical Cokriging

heterogeneity (i.e., stratification and some extremely low
permeable inclusions). If this is the case, the strategy for
tackling field problems should focus on the delineation of
large and “important” heterogeneities. Macrodispersion
concept (Gelhar and Axness, 1983) may thus be suitable for
representing the effect of small-scale heterogeneity in the
prediction of solute transport in field-scale aquifers.
Finally, the convergence of the iterative scheme is
generally rapid but the rate of convergence depends on the

lterative Cokriging

Velocity Fields

12 16

T 16

Fig. 4. Comparisons of InT, h, and velocity fields of the reality, and those generated by classical cokriging, and iterative cokriging-like
method, respectively, for Case 2, o¢ = 2.0, Circles represent the sampling locations of InT or head.
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Fig. 5. Comparisons of InT, h, and velocity fields of the reality, and those generated by classical cokriging, and iterative cokriging-like
method, respectively, for Case 3, o;° = 4.0. Circles represent the sampling locations of InT or head.

tolerance and the variance of InT. For all the cases
examined, the number of iterations required to reach a
tolerance of 0.00001 in head range from 10 to 50 iterations.

Conclusion

A new and physically correct iterative technique is
developed, which overcomes the limitations of classical co-
kriging approach. These limitations stem from the fact that

classical cokriging is a linear estimator and the theoretical
covariance function of head and cross covariance function
between InT and h are limited to small perturbations. Such
limitations restrict the application of classical cokriging to
many real field problems where variability of InT is expected
to be large. Our new approach, combining classical cokrig-
ing technique, a numerical model, and an iterative scheme
relaxes the limitations and makes the geostatistical method
more attractive.
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Although the head measurement does not improve the
estimate of the transmissivity field substantially, a large
number of hydraulic head measurements will improve the
delineation of flow directions and paths. The general flow
pattern appears controlled by the general transmissivity
pattern and the small-scale and local variability in transmis-
sivity has little effect on the flow direction.

Finally, we believe the paper presents a practical tool
that can be easily adopted by many practitioners to tackle

Reality

Classical Cokriging

realistic field ground-water flow problems, although more
theoretical work is still needed to generalize the approach
for different flow scenarios.
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