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Abstract. An iterative stochastic approach is developed to estimate transmissivity and 
head distributions in heterogeneous aquifers. This approach is similar to the classical 
cokriging technique; it uses a linear estimator that depends on the covariances of 
transmissivity and hydraulic head and their cross covariance. The linear estimator is, 
however, improved successively by solving the governing flow equation and by updating 
the covariances and cross-covariance function of transmissivity and hydraulic head fields in 
an iterative manner. As a result the nonlinear relationship between transmissivity and 
head is incorporated in the estimation, and the estimated fields are approximate 
conditional means. The ability of the iterative approach is tested with some deterministic 
and stochastic inverse problems. The results show that the estimated transmissivity and 
hydraulic head fields have smaller mean square errors than those obtained by classical 
cokriging even in the aquifer with variance of transmissivity up to 3. 

Introduction 

During the past few decades, numerous mathematical mod- 
els have been developed to solve the inverse problem associ- 
ated with groundwater systems given scattered hydraulic head, 
rk, and conductivity or transmissivity, T, measurements (see 
Yeh [1986] and Carrera and Neuman [1986a] for a detailed 
review). One popular method is the minimum-output-error 
based approach [e.g., Yeh and Tauxe, 1971; Gavalas et al., 1976; 
Willis and Yeh, 1987; Cooley, 1982; Neuman and Yakowitz, 
1979; Neuman, 1980; Clifton and Neuman, 1982; Carrera and 
Neuman, 1986a, b]. A shortcoming of this approach is that the 
identity of the estimate is often undefined. In other words, it is 
unclear what the transmissivity and head fields derived from 
these methods represent in the case in which only scattered 
head and transmissivity measurements are given. Are they the 
mean fields conditioned on the measurements or one possible 
realization of the ensemble transmissivity and head fields? 
Being unable to ascertain their identities, this approach suffers 
from the same difficulty as any manual model calibration ap- 
proaches [e.g., Yeh and Mock, 1996] because the uncertainty 
associated with the output cannot be addressed. 

The geostatistically based approaches [Kitanidis and Vom- 
voris, 1983; Hoeksema and Kitanidis, 1984; Dagan, 1985; Rubin 
and Dagan, 1987; Gutjahr and Wilson, 1989] have received 
increasing attention recently. The geostatistical approach to 
the inverse problem relies on the use of cokriging estimation 
technique. It is based explicitly on the statistical characteriza- 
tion of the spatial variability of natural log transmissivity, In T. 
The idea is to take advantage of the spatial continuity of the 
In T field implied by a covariance function or variogram and to 
make use of the linearized relationship between In T and qb 
implied by the stochastic flow equation. In cokriging, the un- 
known f (mean removed In T) value at a point of interest is 
estimated by a weighted linear combination of the observed f 
and h (mean removed qb). The weights are determined by 
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requiring that the estimator be unbiased and have minimum 
variance. By casting the problem in a probability framework, 
Dagan [1982, 1985] and Rubin and Dagan [1987] show that 
when the random transmissivity f and head h fields are jointly 
Gaussian (or multivariate normal) with known mean and co- 
variance, the cokriging estimate and cokriging covariance are 
equivalent to the conditional mean and conditional covariance 
of the new joint probability distribution function conditioned 
on the measurements. 

Classical cokriging is a linear predictor. In addition, the 
cross-covariance function between f and h and the covariance 
of h required in cokriging are derived from a first-order lin- 
earized version of the governing flow equation [Mizell et al., 
1982; Kitanidis and Vomvoris, 1983; Hoeksema and Kitanidis, 
1984, 1989], while the relation between T and qb is nonlinear. 
Even if the log transformation of T is adopted, the nonlinear 
nature between f and h still remains. The linearized relations, 
being based on small perturbation theory, are valid only if the 
unconditional variance off is less than 1.0. The nonlinearity in 
the flow equation implies that in general, h will not be normal, 
and f and h will not be jointly normal, even if f is normal. As 
a result the use of classical geostatistical techniques is not 
justified. This inconsistency is bound to be larger if the non- 
linearity of the flow equation is stronger, as in the case of 
nonuniform flow, or if the variance of the log transmissivity is 
large. To overcome these problems described above, Yeh et al. 
[1995] proposed an iterative cokriging-like method that com- 
bines the cokriging and numerical flow model. Gutjahr et al. 
[1994] developed an iterative coconditional simulation ap- 
proach. 

Cokriging also suffers from the numerical stability problem 
as in the classical inverse models. Dietrich and Newsam [1989] 
showed that as the quantity of available data increases and the 
discretization of the system is refined, both a numerically ill- 
conditioned parameter estimation problem and an ill- 
conditioned cokriging equation may appear. Subsequently, the 
cokriged transmissivity field may contain some anomalies. To 
avoid this problem, addition of an error term to the cokriging 
equation is suggested for stabilizing the numerical solution in 
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the method. Bu t they pointed out that addition of such an error 
term may result in the loss of information. 

Camera and Glorioso [1991] compared the classical cokriging 
approach with an iterative statistical inverse approach. They 
concluded that basic hypotheses are similar for the two formu- 
lations and the main differences stem from the fact that lin- 

earization is performed around the estimated mean in cokrig- 
ing methods and around the estimated log T in the iterative 
statistical approach. As a result the latter is less constrained by 
linearity than the former and leads to better estimates and to 
more consistent estimation covariance matrices. However, the 
identity of the estimate remains unknown. 

The purpose of this paper is to illustrate problems associated 
with the assumption of the linear relationship between f and h 
embedded in the classical cokriging technique for estimating 
transmissivity values based on f and h data sets. To improve 
the classical cokriging approach and the minimum-output- 
error based approach, an iterative stochastic inverse method is 
presented. This iterative approach uses an unbiased linear 
estimator that depends on the covariances of transmissivity 
and hydraulic head and their cross covariance. This linear 
estimator is then improved successively by solving the govern- 
ing flow equation and by updating the covariances and cross 
covariances of transmissivity and hydraulic head fields in an 
iterative manner. Therefore the estimated transmissivity and 
head fields from our approach become the coconditional mean 
fields, at least in an approximate sense. 

The Inverse Algorithm 
Consider the natural log of transmissivity, In T(x), of an 

aquifer to be a stationary stochastic process with a constant 
unconditional mean, E [In T] = f, and the unconditional 
perturbation, f. The corresponding hydraulic head is given by 
rk(x) = H(x) + h(x), where H - E[d>] and h is the 
unconditional head perturbation. Suppose a limited number of 
transmissivity and head measurements in the aquifer are avail- 
able: nf observed transmissivity values, f• = (In T• - F), and 
n h observed head values, d>•-, where i = 1, ..., nf and j = 
F/f q- 1, ''', F/f q- F/h. One possible solution that an inverse 
model can produce is head and transmissivity fields that pre- 
serve the observed head and transmissivity values at sample 
locations and satisfy their underlying statistical properties (i.e., 
mean and covariance and so on) and the governing flow equa- 
tion. In the conditional probability concept, such a head or 
transmissivity field is a conditioned realization of qb or In T 
field in the ensemble. Many possible realizations of such con- 
ditioned qb or In T fields exist. Instead of each individual con- 
ditional realization, our stochastic inverse model intends to 
derive the expected value of all the possible conditioned real- 
izations. 

To accomplish our goal, our inverse approach starts with the 
classical cokriging technique, using observed f,*. and h •. to con- 
struct a cokriged, mean removed log transmissivity map, which 
is an approximate coconditional mean. That is, 

nf nj+nh 

fk(Xo): • h, iof•(x,)+ E I•joh;(xj) 
i = 1 j =n;+ 1 

where fk(Xo) is the cokriged f value at location x o. Then 
transmissivity Tk(xo) becomes exp [F + f•(Xo)]; Xio and 
are the cokriging weights associated with x o, which can be 
evaluated as follows: 

nj nf+nh 

E ]•togff(xi, Xl) q- E Idbjoghf(Xj, Xl) : gff(Xo, Xl) 
i=1 j=nj+l 

1= 1,2,...,nf 

(2) 

nj nf+nh 

E ]•togfh(Xi' Xl) q- E Idbjoghh(Xj ' Xl) •' gfh(Xo, Xl) 
t=l ' j=nf+l 

I = nf + l, nf + 2, ..., nf + nh 

where R •r, Rhh , and Rfh are covariances of f and h and cross 
covariance of f and h, respectively. Equations similar to (1) 
and (2) were also derived to construct a cokriged hydraulic 
head map. The covariances Rhh and Rfh in (2) are derived 
from the first-order numerical approximation (see equations 
(10)-(14)) because of its flexibility for bounded domains and 
nonstationary problems. 

Once the cokriged T•(x) field is obtained, it is used to solve 
the governing groundwater flow equation, 

v[r(x) ß v4,(x)] = 0 (3) 

with specified boundary conditions to derive a new head field, 
qb. The new head field is guaranteed to satisfy the given flow 
equation and boundary conditions. This head field, however, is 
an approximate mean head conditioned on the f and h mea- 
surements, and it is not necessarily equal to the coconditional 
mean head, (qbc• (subscript c denotes conditioned, and angle 
brackets stand for expectation). To show this, we can express a 
conditional random transmissivity field as the sum of condi- 
tional mean transmissivity and its conditional perturbation, 
Tc(x ) = (rc(x)• + tc(X ). Similarly, we can write the condi- 
tional head as qb c = { qbc (x)) + h c (x). Then the exact con- 
ditional mean flow equation becomes 

V[(Tc(x)}. V(qbc(X)}] + (V[tc(X)' Vhc(x)]} = 0 (4) 

As shown in (4), true conditioned mean T and qb fields do not 
satisfy the continuity equation (3), and (qb c) is not necessarily 
equivalent to the qb in (3) unless the second term in (4) is zero. 
The second term becomes zero only under two conditions: (1) 
all the transmissivity values in the aquifer are specified (i.e., 
tc(X) = 0), or (2) all the head values in the domain are known 
(measured) so that h c(x) is zero everywhere. Suppose that the 
head field is known everywhere (i.e., a conditioned mean field, 
(qbc}) but our information about the transmissivity field is 
incomplete. The cokriged transmissivity field, T•(x), in (3) will 
be the coconditioned mean T field if and only if the divergence 
of the product of T•(x) and the gradient of the known head 
field is zero. More specifically, if Tk is obtained from classical 
cokriging by using all the head values and the incomplete 
transmissivity data set, the head field, qb, derived from (3) by 
using this T• should not equal (qbc} or the observed head field. 
This is attributed to the fact that T• is an approximated co- 
conditioned mean field based on classical cokriging, which 
assumes a linear relationship between f and h. In order to 
derive the true conditional mean head field a conditional mean 

transmissivity estimator that uses head information must con- 
sider the nonlinearity between f and h. For cases in which 
information about both head and transmissivity distributions is 
incomplete the exact conditional mean flow equation (4) and 
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the exact coconditional mean transmissivity field, (Tc), must 
be used. 

Since we do not have a way to evaluate the term, 
(V(tc' Vhc)), in (4) at this moment, we have to ignore its 
existence but focus on the development of the method for 
tackling the nonlinear relationship between f and h. To ac- 
complish this goal, we adopt a successive linear estimator to 
modify the Tk(x) field in (3). That is, 

nf+nh 

•'r•r+l)(Xo) = •'r•r)(Xo) q- E to);)[(•)jV•(XJ) - (•}r)(xJ)] (5) 
y=nl+ l 

where %0 is the weighting coefficient for the estimate at loca- 
tionxo with respect to the head measurement at locationxy and 
r is the iteration index. ½c is an estimate of the conditional 
mean of In T, which is equal to the cokriged log transmissivity 
field, f•, + F, at r = 0. The residual about the mean estimate 
is y, (i.e., y = In T - ?c). Note that ?c and y are different 
from F and f previously defined; (b) r) is the head at the jth 
location of the solution to (3) at iteration r, and (by is the 
observed head at location j (i.e., (by = Hi + h y). The succes- 
sive linear estimator is unbiased, since 

nf+nh 

E[•rr• r+l)] = E[•rr• r)] -3- E toJ;){E[t•)j• - E[t•)(r)']} = F (6) 
j = t/f+ 1 

To ensure the estimator having minimal variance, the mean 
square error (MSE) criterion is used to select the optimal 
coefficient, to, 

E[(ln T- ½•r+•))2] = min (7) 

The mean square error for our estimator can be expanded as 

E[(ln r- •rr}r+l)) 2] 

nf+nh 

= E (In T - ttSjo !. q) j -- (•)r)) 
J = n f+ 1 

nj+nh 

= E y (r) __ E . (r) l,. (r) tOjo ttj 

j = n f+ 1 

nf+nh nf+nh nf+nh 

-- E•;'- 2 E '(Do(r) u.•jo Oyh '4- E E , (r) , (r)o (r) tOjotOkoOhh (8) 
j--n;+ l j=nf+ l k=nj+ l 

where Eyy, Eyh, and e hh are error covariances and cross co- 
variance at each iteration. To minimize (8), we differentiate it 
with respect to to and set the resultant to zero. Thus we have 

nf+nh 

E u.•joOhhk.•j, Xl) -- X,) (9) Oyh •,'• o, 

J = n f+ 1 

I = tlf+ 1, ''', tlf+ 

The to values are determined by solving (9) with given ey h and 
ehh. With new to values, (5) can be employed to update our 
estimate, •c- However, the solution to (9) requires the knowl- 
edge of eyh and ehh which can'be evaluated at each iteration as 
follows. 

On the basis of the first-order analysis for a finite element 
groundwater flow model [e.g., Dettinger and Wilson, 1981], hy- 
draulic head at the rth iteration can be written as a first-order 

Taylor series: 

4) = •(c r) + h © = •[•?)+ y] = •[•c r)] + l Yr' 0 lnT 

where • represents (3). The first-order approximation of the 
residual h © can be written as 

h (r) • O I (r) __ j(r)y (r) (11) 0 lnT •,,Y 
where J can be evaluated by using an adjoint state sensitivity 
method [e.g., Sykes et al., 1985; Sun and Yeh, 1992] subject to 
boundary conditions. Using (11), we then derive the approxi- 
mate covariance of h (r) and cross covariances between y(r) and 
h (r) 

E r){'v' Xj) = J(r)E•;)(Xl, Xm)J tt" hh k.mt, 

(12) 
8(r)(.•. Xj ) = j(r)8•)(Xl, Xm) yh 

where i andj = nf + 1 to nf + tlh; I and m = 1, 2, ..., N 
(total number of nodes); J is the sensitivity matrix of nh X N, 
and superscript t stands for the transpose. Here, Eyy is the 
covariance of y, which is given by 

n; 

(')(x , xO = gXo, xO - X,ogXo, x,) Eyy .. o 

nj + nh 

-- E IJCjoRfh(Xk ' Xj) (13) 
j=nf+l 

at iteration r = 0, where k = 1, 2, .-., N and h and/x are 
cokriging coefficients. Equation (13) is the cokriging variance if 
x o = x•,. For r -> 1 the covariances are evaluated according to 

rl / + rlh 

*(r+l)(Xo' Xk) -- •Y(;)(Xo' Xk) -- E '(r)o(r)(Xk, x,) (14) u-• to C yh •yy 

i=n/+l 

After updating ?c(X) the flow equation (3) is solved again 
with the newly updated ?c (x) for a new head field, qb. Then the 
absolute difference in o-f (the variance of the estimated trans- 
missivity field) between two successive iterations is evaluated. 
If the difference is smaller than a prescribed tolerance, the 
iteration stops. If not, new %h and ehh are evaluated by using 
(12). Then (9) is solved to obtain a new set of weights which are 
used in (5) with (qb•. - qbJ r)) to obtain a new estimate of 
?c(X). 

The condition numbers of the cokriging matrix equation (2) 
and the matrix equation (9) of our iterative inverse method can 
be extremely large if the number of head measurements is 
large. Truncation errors thus may be amplified and may affect 
the interpolation of transmissivity values by cokriging (1) and 
our iterative method. To avoid such a problem, addition of an 
error term to the head covariance matrix in (2) was employed. 
In addition, a relaxation term, ©, was added to the diagonal of 
the matrix in (9) during each iteration: 

nf+nh 

E to(DE(r)['" XI) 'q- (•)(r)•tt • ø(r)['v' XI) (15) jo hh k'XJ, øyh k'• o, 

j =n/+ 1 

I = nf + i, ..., n! + n h 

where 8• is the identity matrix. In general, a large value of © 
slows down the convergence rate, and a small value may lead 
to numerical instability. In our approach, the © value is as- 



88 YEH ET AL.: COCONDITIONAL TRANSMISSIVITY AND HYDRAULIC HEAD FIELDS 

signed dynamically; the value of the relaxation term is deter- 
mined as the product of a constant weighting factor and the 
maximum value of ehh(Xi, Xi) at each iteration. Since the value 
of ehh will decrease as iteration proceeds, the © value will 
decrease accordingly. This term represents not a measurement 
error, as discussed by Dietrich and Newsam [1989] and Carrera 
and Glorioso [1991], but merely a numerical technique to con- 
dition the matrix. In fact, this approach is analogous to the 
pseudo transient technique employed for nonlinear numerical 
problems described by Fletcher [1988]. 

Examples 
Assessment of an inverse method under any field condition 

is difficult unless a large number of transmissivity and head 
data sets are available. Such detailed data sets rarely exist. 
Even if these data sets are available, it is difficult to determine 
the number of measurement errors in the data sets. Therefore 

validation of a model for field condition is inconclusive [see 
Gelhar, 1993, p. 347]. More important, verification of an in- 
verse model against a perfectly known scenario is always a first 
step toward the model application. For this reason the perfor- 
mance of our stochastic inverse approach is demonstrated by 
using hypothetical heterogeneous aquifers with the assumption 
that all the statistical parameters characterizing the spatial 
variability of In T are known exactly and measurements are 
considered to be error free. The domain size of the two- 

dimensional hypothetical aquifers is specified as 21 m long and 
11 m wide and is discretized with uniform elements of 1 m x 

1 m. Each element was assigned a constant mean transmissivity 
value (ln T -- 0.0). The perturbation f field was generated 
from a random field generator [Gutjahr, 1989] by using an 
exponential covariance function with anisotropic correlation 
scales (3 m in the x direction and 1 m in the y direction). These 
transmissivity values will be called the true transmissivity val- 
ues. The upper and lower sides of the aquifer are assigned as 
no flux boundaries and the left- and right-hand sides are pre- 
scribed head boundaries with prescribed head values of 0.95 m 
and 0.85 m, respectively. In addition, a pumping well with a 
constant discharge Q is placed at a given high-transmissivity 
location. The steady state groundwater flow equation (3) was 
solved with the true transmissivity field to obtain the corre- 
sponding true head field. Samples were then taken from these 
true fields. Note that a finite element model was used to solve 

(3) for the head at each node. The head values at the four 
nodes of an element were then averaged to represent the head 
at the center of the element. 

Two different types of inverse problems (deterministic and 
stochastic, as explained below) are examined. Results of our 
approach are compared with those derived from the classical 
cokriging approach. The performance of these methods is eval- 
uated quantitatively by using the following criteria: 

N 

P,=• • (Yo,--Y•.,) 
t=l 

N 

P2 = • • (Yo, - Yet) 2 
t=l 

(16) 

where Yoi andyei are the observed and estimated transmissivity 
values at ith location, respectively. N is the total number of 

elements for f. P• is a measure of the bias, and P2 is the mean 
square error of our estimates. 

Deterministic Inverse Problems 

Assuming the Darcy law is valid, the Darcy velocity can be 
written in terms of conditional means and perturbations: 

(qc) + qc = -[((Tc) + tc)' V(Hc) + (((Tc) + tc)' Vhc)] (17) 

Suppose that all the head and transmissivity measurements are 
error free and the head values at every node of our finite 
element aquifer are known. Thus the second term on the 
right-hand side of (17) must be zero, since the conditional 
perturbation in h c is zero everywhere, and (17) becomes 

(qc) + qc = -[((Tc) + tc)' V(Hc)] (•8) 

In order to obtain a unique transmissivity distribution, .Tc(x ) = 
(To(x)) + to(x), the Darcy velocity, (qc(x)) + qc(x), must' 
be specified at every point in the aquifer. Since flow is under 
steady state conditions, Darcy's velocity must be constant along 
any given streamline. Therefore, if all the heads are known and 
the velocity is specified at all the boundary nodes or a column 
of transmissivity values crossing all the stream lines is pre- 
scribed, the solution of the inverse problem is unique. We call 
this type of inverse problem deterministic. Under these condi- 
tions a reliable inverse model is expected to reasonably identify 
all the transmissivity values in the aquifer. Problems associated 
with the linear cross correlation between f and h and the linear 
predictor embedded in cokriging as the variance off increases 
can be explored. Further, our relaxation approach for allevi- 
ating numerical instability problems associated with our in- 
verse model can be tested. 

For the above reasons, two such deterministic cases were 

examined' case 1, cr• = 0.38, and case 2, crfi = 3.01. A well 
discharging Q = 5 m2/m was located at point (5, 8) in these 
two cases. The random transmissivity fields were generated 
with the same seed number. We assume that the transmissivity 
values of the elements on the left-hand side of the boundary 
(nf = 11) are known and all the heads in the aquifer (nh = 
231) are given. Since all heads were used, the condition num- 
ber of the cokriging matrix is excessively large. Without the 
addition of a relaxation term the cokriged transmissivity map 
produced some anomalous values of transmissivity due to nu- 
merical instability [see Dietrich and Newsam, 1989]. To allevi- 
ate this problem, a small relaxation term with a value equal to 

2 
1% of the Crh was added to the head covariance matrix in the 
cokriging equation. Figures la, lb, and lc show the true, the 
cokriged, and our estimated transmissivity distributions of the 
hypothetical aquifer of case 1, respectively. It is evident that 
even when all the head information is given, cokriging tends to 
produce a much smoother transmissivity field than the true 
one, although the general patterns of the two fields are very 
similar. On the other hand, the transmissivity field estimated by 
our approach depicts all the detailed variation in transmissivity 
and is in excellent agreement with the true transmissivity dis- 
tribution. 

The true transmissivity field, the cokriged field, and our 
approach for case 2 are illustrated in Figures 2a, 2b, and 2c, 
respectively. As crfi increases to 3.01, the cokriged transmissiv- 
ity field again is very smooth except near the 11 f measure- 
ments at the left-hand side boundary. In this case the spatial 
pattern of the cokriged transmissivity map has little resem- 
blance to the general pattern of the true field. Similarly to case 
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1, the transmissivity field from our approach is in good agree- 
ment with the true one, although the discrepancy between the 
estimated and the true field is slightly larger than that in case 1. 

The above results are expected, since the linear relationship 
between f and h assumed in classical cokriging is valid only for 
small variances in f. More specifically, consider one- 
dimensional steady state flow through a stochastic transmissiv- 
ity field with a given flux, q. The q can be expressed as 

( dh) d& (r+I) dH q = - T •-x = - e •xx + •xx = T g e f ( J + j) (19) 

where J is the mean gradient and j is its perturbation. T a is the 
geometric mean of T. The gradient perturbation can thus be 
expressed as 

ah q (2O) J=dx =•-e 
g 

which shows that h and f are related in a nonlinear manner. If 
f is small, the exponential term in (20) can be approximated by 
the first two terms of a series expansion. Thus (20) becomes 

ah q (21) J= Txx--r 
According to (21), for small values off or cr], h can be closely 
approximated as a linear function of f. This approximation 
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Figure 1. (a) The true In T field, (b) the cokriged In T field, 
and (c) the estimated In T field by our iterative approach for 
case 1. 
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Figure 2. (a) The true In T field, (b) the cokriged In T field, 
and (c) the estimated In T field by our iterative approach for 
case 2. 

supports the preference of using In T in the inverse modeling, 
as stated by Cartera and Neuman [1986b]. 

The convergence patterns of our iterative approach for cases 
1 and 2 are illustrated in Figures 3a and 3b, where the criteria 
P•, P2, crf, max 8h (the maximum head difference between 
the observed and estimated head at observation locations), and 
max ef (the square root of the maximum eff(x, x)) are plotted 
as a function of iteration. For both cases our iterative approach 
produces estimates that are much less biased and have smaller 
MSE than those by cokriging, although both are unbiased 
estimators. The crf of our estimated transmissivity field stabi- 
lizes rapidly in case 1 and reaches the value of 0.36. For case 2, 
where trf = 3.01, our approach produces a field with o-• = 
2.84 at the three hundredth iteration. The value of max ef for 
case 1 decreases rapidly with iterations, indicating improve- 
ments of the estimated f field. For case 2 this value decreases 
at h slower rate than that of case 1 due to the stronger non- 
linearity of the problem. 

Stochastic Inverse Problems 

The stochastic inverse problems are referred to the case in 
which one or both of the perturbation terms in (4) are un- 
known, owing to the lack of measurements. Subsequently, no 
unique solution to the identification of transmissivity values 
can be obtained. A logical solution to these stochastic inverse 
problems is to derive the mean In T and & fields that are 
conditioned on the observed In T and & values [see Dagan, 
1985; Kitanidis, 1986]. Uncertainties around the conditional 



9O YEH ET AL.: COCONDITIONAL TRANSMISSIVITY AND HYDRAULIC HEAD FIELDS 

0.5 .•.__.._..• ............... !10 o 
ß t\ --...., o, 

o.1 •1•_ 1ø-5 
A 0.% ' "'6o .... .... 

NUMBER OF ITERATIONS 

o; 3 

P• 2 10• 
P• 10 • 

1 
10 '5 

P 

B o 50 lOO 15o 200 ' ' 2•0 ' ' õ•ø-6 
NUMBER OF ITERATIONS 

Figure 3. The convergence patterns of our iterative ap- 
proach for (a) case 1 and (b) case 2. 

means at the unsampled locations are then addressed by using 
the conditional variances of In T and (•. Classical cokriging is 
a possible tool for this purpose. However, as demonstrated in 
the examples of the deterministic inverse problems, the cokrig- 
ing technique is restricted by its assumption of the linear re- 
lationship between f and h. Our iterative approach alleviates 
the problem of linear assumption and is capable of producing 
In T and (• fields that preserve the measured values at sample 
locations and satisfy the continuity equation. These In T and (• 

fields are not necessarily the true conditional mean In T and (• 
fields defined in (4), since the term (V(t c ß Vhc)) is not eval- 
uated explicitly and is excluded from the flow equation (3) in 
our iterative approach. As a result the contribution of this term 
is likely lumped into our estimates of (ln Tc) and ((•c). Sub- 
sequently, In T and (• fields derived from our iterative method 
are merely approximate coconditional means. They may be 
qualified as coconditional effective transmissivity and head 
fields in the sense that they satisfy the flow equation. Never- 
theless, these approximations should be close to the exact 
conditional means if the magnitude of the term (V(t c ß Vhc)) 
in (4) is small. One way to prove our claims is to conduct 
coconditional Monte Carlo simulations. This coconditioning 
approach will require a large number of simulations and de- 
mands a high-performance computer. More important, it re- 
quires the use of a coconditional Monte Carlo technique that 
is capable of producing coconditioned realizations of In T and 
(• fields. This technique does not exist at this moment. For 
these reasons we can only test our results by using the following 
criteria: The variances of our estimated In T and (• fields 
should be larger than the variances of the cokriged fields but 
smaller than the variances of the real-world analog. In addi- 
tion, our mean estimates should be unbiased and have smaller 

MSE than that of cokriging. Using these criteria, we employ 
the scenario below to test our iterative approach. 

The two-dimensional flow scenario in the previous cases of 
the deterministic inverse problems is used with the exception 
that the number of head and transmissivity measurements, nh 
and nf, are specified as 30 and 5, respectively. The locations of 
these measurements are shown in Figure 4 by the circles. In 
addition, a different seed number is used to generate the ran- 
dom f field, and the well is located at point (9, 6) with Q = 5 
m2/m. Also shown in Figure 4 are the resultant transmissivity 
and head fields from cokriging and our iterative. approach. 
Both approaches produced head fields that closely resemble 
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Figure 4. Illustrations of the true In T and head perturbation fields and those by the classical cokriging 
method and our iterative approach for case 3. 
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Figure 5. The convergence patterns of our iterative ap- 
proach for case 3. 

The addition of the relaxation term is necessary. It is capable 
of controlling the instability of the numerical solution in the 
case in which a large number of observed head values are used. 
If a relaxation term of an extremely small value (or zero) is 
used, our iterative method may diverge as in the case of solving 
steady state nonlinear equation (e.g., Richards' equation). A 
large value stabilizes the solution but decreases the rate of 
convergence. 

The CPU time for case 2 of the deterministic inverse prob- 
lem was about 30 min on an IBM RISC/6000/590 with 512- 

Mbit memory for the 300 iterations, since it used all the 231 
head information. On the other hand, it only required approx- 
imately 1.2 min of CPU time for the stochastic inverse prob- 
lem. 

the true head field. Although the difference between the results 
of the two approaches is small, the cokriged transmissivity field 
is smooth, depicting the general structure of the true field. The 
transmissivity field from our iterative approach reveals more 
detailed structures. 

Figure 5 shows the performance measures of our iterative 
approach as a function of iteration number. Again the perfor- 
mance of cokriging is reflected by these measures at the zeroth 
iteration. On the basis of this figure our transmissivity esti- 
mates are less biased, and the MSE is smaller than that of 
classical cokriging. The variance of our estimated transmissiv- 
ity field, o-f, stabilized around the three hundredth iteration 
and reached a value of 1.7, which is greater than that of the 
cokriging estimate (0.67) but smaller than the variance of the 
true field (2.96). The values of P• and P2 for the estimated 
head fields by cokriging are 0.77 x 10 -4 and 0.35 x 10 -2, 
respectively. The corresponding values by our approach are 
0.25 x 10 -s and 0.13 x 10 -2. The magnitude of max •f decays 
exponentially at a slower constant rate than in the determin- 
istic cases. The constant rate also decreases after around the 

two hundredth iteration, indicating further reduction in the 
improvement of f as the iteration continues. 

Discussion 

The rationale of our successive linear predictor is different 
from the rationales described by G•l•s e! M. [1976] and 
C•rrer• •nd Glorioso [1991], although (5) is similar in form to 
their equations. Our approach uses a linear estimator and the 
governing flow equation successively to update the error co- 
variances Igyy, Ighh and cross covariance %• and in turn im- 
proves the difference in estimated and observed head values. 
Our approach attempts not to minimize the differences 
tween the observed and estimated head but to minimize the 

mean square error in our In T estimates. In our view the In T 
and qb fields obtained by our approach are essentially approx- 
imate conditional means. 

We have to point out that the covarianc½s (R• and •) 
and the cross covariance (Rf• and •f•) are derived from first- 
order approximations (see (11) and (12)). In addition, the 
exact conditional mean flow equation was not used to derive 
the sensitivity matrix. The quality of the approximations, espe- 
cially for the large variance problems, is unknown. Subse- 
quently, the conditional covariances off, •ff, updated by these 
linear approximations may be affected. The continuous decline 
of max •f value with iterations, although at a slow rate in the 
stochastic inverse problem, appears to reflect this problem. 

Conclusion 

Our proposed iterative approach attempts to circumvent the 
nonlinear relationship between f and h through successive 
linear approximations. Two deterministic inverse problems 
with different degrees of nonlinearity were used to demon- 
strate the ability of our model. We show that our inverse 
approach is undoubtedly superior to classical cokriging, which 
relies on the linear assumption of the relationship between f 
and h. Our approach is able to reproduce transmissivity and 
head fields that are in close agreement with the true fields even 
for aquifers with variance of f up to 3 under nonuniform flow 
conditions. These estimated fields thus represent the condi- 
tional mean fields. However, our approach requires more com- 
putational effort than the cokriging. 

For stochastic inverse problems the estimated transmissivity 
patterns by the cokriging technique and our approach are very 
similar. Nevertheless, our approach is better than the classical 
cokriging method, since it produces smaller bias and MSE of 
the estimates. In addition, it reveals a more detailed spatial 
pattern of the true transmissivity field. We have to emphasize 
the fact that the estimates of In T and qb fields by our method 
are merely approximate mean fields conditioned on the ob- 
served f and h values. They may be best called the conditional 
effective transmissivity and head fields. 
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