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Stochastic Analysis of Unsaturated Flow in Heterogeneous Soils
2. Staustically Anisotropic Media With Variable «

T.-C. v Yeu! Ly W, GeLHAR.? AND ALLAN L. GUTIAHR

New Mexico Institute of Mining and Technology, Socorro

Steady unsaturated flow in heterogeneous soil with an arbitrarily oriented mean hydraulic gradient is
analyzed using spectral solutions of the stochastic perturbation eguaiion wiich describes the capiflary
pressure head w. The unsaturated hydrauiic conductivity is related to W by K = K, exp (—zd), where &,
is the saturated hydraulic conducuvity and = is a soil parameter, and both K, and =z are treated as
three-dimensional statisiiczlly homogeneous. anisotropic random feids. Analytical results are obtained
for the capitlary pressure head variance and the etfective imean) unsaturated hydraulic conductivity. The
nead vanance depends upon the degree of anisotropy of the In K, covariance: when 2 is random, the
head vanance increases with mean capillary pressure head. The effective hydraulic conductivity for
arbitrary orientation of the mean hydraulic gradient J is shown 0 have tensoral properties, but its
components depend on the magnitude and direction of J and the orientation of the stratification in the
soil. When 2 is random, the degree of anisotropy of the effective condugtivity depends strongly on mean

capillary pressure,

INTRODUCTION

In part 1 of this series of papers, we demonstrated the im-
portance of dimensionality in the analysis of fow in statis-
tically isotropic soil. However, natural soils or geologica! for-
mations. in general, exhibit bedding or stratification. Begause
of this geological structure. hvdroiogic properties of the
porous media should be considered to be statistically aniso-
tropic. Statistical anisotropy impiies that the correlation scale
of & stochastic process depends on the direction. Hydraulic
conductivity, for sxampie, usually correlates at longer distance
in the direction parailel to bedding than in the direction per-
pendicular to bedding. Saturated hydraulic conductivity data
presented by Smith [1978] from both horizonzal and vertical
profiles of the Quadra sand outcrop in Vancouver. Britsh
Columbia indicate that the correlation scale of the conduc-
tivity in the horizontal profile is an order of magnitude larger
than that of the vertical. Byer and Srephens [1983] also ob-
served statistical anisotropy in hydraulic conductivity data
from alluvial sands. Thus It is necessary to sxtend the analysis
to statistically anisotropic media in order to more realisticaily
describe the effects of field heterogeneity,

In the assumed exponential £ — relationship {see equa-
ton {1) Yenr er al. [this issue] referred to as part ! in the
following) the saturated hydraulic conductivity K, and the
parameter x are the two parameters characierizing the unsatu-
rated hydraulic conductivity behavior as a funcrion of capil-
lary pressure. The effects of spatially variable sarurated hy-
draulic conducrivity on unsaturated flow have besn anaiyzed
in the part i of this paper. Although fieid variator of the
parameter » has not been as {ully investigated as the saturated
hydraulic conductivity, variation of simitar parameters whica
control the rate of reduction in unsaturated hydraulic conduc-
tivity havs bean reported by Warrick er af. [1977], Russo and
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Bresler [1981], and Yeh [1982]. To be more realistic, one
should consider the effect of the randomness of # in the analy-
sis of unsaturated fiow in heterdgeneous soils.

In the first section of this paper the effects of sratistical
anisotropy or stratification on head variancs and effective hy-
draulic conductivity will be investigated for the media with
spatially variable saturated hydraulic conductivity and a con-
stant x parameter. Then the full tensoriat property of effective
hydraulic conductivity will be derived. Finally, the effective
hydrauiic conductivities of media in which both K, and « are
regarded as stochastic processes will be deveioped.

LEFFECTS OF STATISTICAL ANISOTROPY

In order to focus on the effects of statistical anisotropy on
unsaturated fow. we first consider the case where x is a deter-
ministic constant. The mean hydraulic gradient is assumed to
exist in the vertcal dirsction x, only (J, = J, = G). Thus for a
three-dimensional steady state flow the spectral solution o the
general stochastic partial differential equation (part i, equa-
tion {10V} reduces to0

In 2
Sy = _J,.,_"%L}' n
where f = 2 (2J, — 1),
To evaluate (1) a three-dimensional anisotropic covariance
function of the saturated hydraulic conductivity random fleid
is adopted. following Gelhar and Axness [1983], in the form

z 2 =
S, 0N

Ryd8) =,  exp [—( -

AT AT

(2

where 4,. 4,, and 4; are the correlation scales in the x,, x.,
and xy directions. The spestrum §;, corresponding to this
covanance function is

e
Grioghriy

S, =— {3)
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Substitution of this spectrum in (1} results in the spectrum S,
of capillary pressure head
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Fig. 1. Varianees of capillary pressure resuiting from three-
dimensional anisotropic In K, field with different aspect ratios; o=
Afryand J o= 1

Further, assume that the hydraulic conductivity variation is
siatisticaily isotropic in the horizontal plane, ie, j, = i = i
The capillary pressure head variance ¢,° is obtained by inte-
grating the spectrum (4) over wave number space (ses the
appendix). The general form of the head variance is

TR % dr
Ghz =-'r=_-°'f-/-1 ‘P‘j 3 3 I B
o Lp” = 1e* + pigr + 177
where p = /i, is the aspect ratio, g=/,f and S =2 (ZJ,

= 1). After integrating (5), the capillary pressurs head vari-
ance becomes

(3}
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The effects of aspect ratio, p, on the variance of the capillary
pressure head are shown in Figure 1.
Recall from (40} of part | that the effective hydraulic con-

(65)

— tan

ductivity can be writien in the form
K, = E[q,}J,
T I 2 E
= K,,,LI + 3 fo,° = 22E0 fh] = 2°¢,%] = —%@]
(7)

The analysis in part 1 showed that E[fh] = (8/J15,% Using
{2) for the hvdraulic conductivity covariance function and fol-
lowing the procedure used in the part 1,

ek - 26,2 1
EEﬁ] - 'ELf ale - Jio’f P [/‘_1 ljllo.fzpé pZ{g . 1}]
(8)

Substisuting ,°8/J and (8) for E{fk] and ELf], the effective
hydrauiic conductivity in the direction perpendicuiar to the
bedding can be expressed as lollows:

228 4 .
S il 2
l (: Iy -"12’.~11P2>Gk ]} ©

If the exponential generalization {ses part ) is used. the ef
fective hydraulic conductivity is

o g—1
K,=K;exp {_“H’E[sz(g " )

+(xz —-%-Z-%":)U}.:ﬂ{} {10y
Jyoo J A e _i

In order to demonstrate the effects of statistical anisotrepy on
the effective hydraulic conductvity, the result of (10} is flus-
trated in Figure 2 for several values of the aspect ratio. How-
ever, the principal effective hydraulic conductivity in the hori-
zontal direction cannot be evaluated directly in this case be-
cause of the unidirectionz! low assumption.
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Fig. 2. Effects of aspect ratio, p, on the effective hvdraulic con-

ductivity K. K, = K; exp {—~2H). and In K¢ = E[In A ] for g, =1
and J = |,
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ErFrecTIVE HYDRAULIC CONDUCTIVITY OF
MULTIDIRECTIONAL FLOW

In this section we investigate the etfective hydraulic conduec-
tivity in a generalized case where the mean gradient is not
restricted to be umidirectional, In other words. the mean gradi-
ent vector J inclines to the axes of the original coordinate
system (unprimed system) x,, X». and x;. [n general, the mean
gradient vector is composed of thres nonzero components: J,.
J..and J, in the direction of x,, x., and x, (ses Figure 3), and
the mean flow becomes muitidimensional. The stratification is
aligned in the horizontal axis of the primed coordinate system
{xy = x3'). The angle between the direction of stratfication
and the ordinate of the unprimed system. x., is 8. The objec-
tive is to derive ail the components of the effective hydraulic
conductivity for this type of porous medium. This analysis is
developed for the special case /i, — = in the In X, covari-
ance. (2). Again. the paramerer z is taken to be constant.

From the reiationship of capillary pressure head and hy-
draulic conductivity Fourier amplitudes (9} of part 1 the head
spectrum can be related to the hydraulic conductvity spec-
trum by

Jikid

Sy =
MUt 4P P k) T

{n
where P, = J; —1{d;,/2), J,; is the Kronecker delta. and the
Einstein sumunation convention is used. Appiication of the
transformation rule k; = a4, where a,, = cos (x,, x;), the
head spectrum in the primed system takes the form

2 e e
PP TR N3P A AP IO

Irpod o2 e A
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Shh{k') =

(12)

Integration over the wave number vector k yields the capil-
lary pressure head variance

. szﬁvnz(-ftau = Jadig)
gy =

13
2l + ¢ (19
where e=x4 [(2J, —1l)la;, +2/,a,,3. Again, the term E[ féh/
¢x;1 has to be evaluated in order to determine the effective
hydraulic conductivity. For this generalized case, the cross-
spectrum of [ and Sh/dx; =, is
Sfji = E[-lki de dzk*]
—J kKD + {220k — 2k,)]S

_ : ki = 2k, L
k™ + (22d K — 2k )] 14

where i, j= 1. 2. aand 3. Using the exponential covariance
function (2} and transforming (14) to the primed coordinate
system. the generalized spectral refation becomes

k) = —o,2a (R TRV

L
m(anj“m

A+ 4t PP kRN k2N (13
With 474, — x the integration of {15 over wave number
space vields {ses Yeh, 1982]

7 2]-

Therefore the mean fluxes in the x, and x, directions can be
obtained by substituzing {13) and (16) into (12} of part 1. The
term E[ k] is evaleated by the relationship provided in (31) of
part l. Consequently, the mean Juxes in the x, and x, direc-
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{1+ s8)

4
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e

Fig. 3. Coordinate systems for the case of flow in anisotropic la
K, media with arbitrarily oriented stratification and mean gradient J;
2 is the gravirational vector.

tions in the unprimed coordinate system are

ol N*{2a,, =31 2a,,°
Elgl=K 1 +L(i+ i — L
[9.] m{j: 2 ( e — 1) 1+ 2 1
_]__(_Gf-auazz)‘],}
l+e -

(17

- N*2a,, - 300 2a,,? ;
' ele = 1} l+e/"?

where J' = J a4,y + J,a,,, 2nd ¥ = z4,. Equation (17) can be
wricten in the linear form

Elg) = K,;J;
where
K-u w K P -E-fi 1+ Nziza!! _BJ'U’_ 251:2
2 ele + 1) l+e
(18a)
Ron= & 1+ 00 (1 Mo 23 200
2 ele + 1) 1+e
(185)
K= Km(.:f.f;;&;‘fii) {186
Ry == Km(;‘ii_’_uza_l.if‘_l) (134)

From the results in {18) it is easily shown that K; transforms
as a symmerric tensor of rank two. Howsver, 1t should be
recognized that K, and K., are functions of J, and J,. The
principal axes of £; are found o coincide with the x,” axes
associated with the stratification (Figure 3) and the principal
effective hydraulic conductivities becomes

ok ([ P *ay =30 2
' ge+ 1 l1+e

{192)

- s et NA, = 3N
K=K = Ami:i +—£-L1 .._‘.J.___;_.)_,)] {198)
- 2 =1
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Fig. 4. Principal effective hydraulic conductivities K,,” (dashed
curve) and K;,' (solid curve) as functions of rotation angie. 8, and a4,,
Kn=Kgexp{—aH)andIn Kg=E[ln K]Jfor J, = 1,.J, = J; =G,
and ¢, =L

After the exponential generalization {ses part 1), the prin-
cipal hydraulic conductivities take the form

o a2 N*2a,, - 3T 2
KyW=K,exp|—=[1<+ -
= K XP[ 2 ( ele-+ 1) 1+ e)

(20q)

- - : N2z, - 37V
K;»' =Ky =K, eXP[G; (I—’-———-——( &1z = 373 ):f

ele + 1}
(205}

The 2bove hydraulic conductivities yield an anisotropy ratio

- .
IS”, = exp s
K, {1+e

Equation (21} shows that the anisotropy ratio of the hy-
draulic conductivity depends on not only ,%, 24y, and 4, but
aiso the magnitude and orientation of the mean hydraulic
gradient vector J. To show the dependence of the principal
unsaturated hydraulic conductivities and the anisotropic ratio,
normalized conductivities and the anisotropy ratio are plotted
as a function of x4, at different orientations in Figures 4 and
5.

(21)

ErFECTS OF RANDOM 2 PARAMETER

Head Variance

If the parameter a is assumed to be a statistically homoge-
neous stochastic process, the spectrum of g, §,,, quadspectrum
Q. and cospectrum Co,, in the spectral solution of the three-
dimensional fiow (10} of part t are not zero.

In order to evaluate the head spectrum §,,, knowledge of
spectrz of the 2 and f processes is necessary. The ¢ross-specrral
density functions of the a and f processes have to be known as
well. If the cross-covariance of these two processes is known,
the cospectrum can be determined. However, no data and
information are available for this purpese. It is difficult to
assume a reasonabie form for the cross-covariance funciion
without any definite justification.

Data on the K — ¢ relationship of several different types of
soil obtained from Mualem’s [1976] soil catalog wers used to
investigate the relationship between X, and z However, no
clear relationship is evident. Furthermore, 2nv conclusion on
the behavior of such 2 correlation requires 2 large amount of
field data.

Since no justifiable cospectrum and spectrum of the a pro-
cess are available, the analysis 15 carried out with the following
assumptions:

1. The autocorrelation functions of the 2 and f processes
are assumed to be squivalent.

2. The a and f processes have the same correlation length
scale for the sake of simpheity.

3. The relation of 2 and f will be considered 25 either
statistically independent or perfectly correlated.

In the following analysis, we will refer 10 the case where the
saturated hydraulic conductivity and pore-size distribution
parameter are perfectly correlated as case 1 and where the
saturated hydrauilic conductivity and pore-size distribution
parameter are independent as case 2. If perfsct correlation
between @ and K is considered, one can express K, in terms of
e as

(K =a+f (22)

where { and § are constanis; therefors { /= a. Making use of
the Fourer-Stieltjes representation, the spectrum of the a pro-
cess is related 1o f by

S =08, (23)
and the cross-spectrum, consequently, becomes
S.r=1S, (24)

which is real so that Co,, =S, and Q,, = 0. On the other
hand, if @ and f are statistically independent, {case 2), both the
Co,; and Q,; = 0. With these assumptions, the spectral solu-
tion (equation (10} of part 1) can be evaluated with the auzo-
covariancs function of either the f or a processes.

However, the selection of autocovariance functions or spec-
tra for the samurated hydraulic conductvity and the  parame-
ter fields requires additional cousideration. This is due to the
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TABLE [, Summary of Spectral Relationships. Vartances. and Cross-covariances Used in
Thres-Dimensionai Analysis of Flow Through Anisotropic in K, and z Randem Fieids
Spectral
Relfationship Case | Case 2
s kU8, ~2HS, + H*S ) 5 a,, e M1 — HPL,? ag Mol + 6, 54,0
" k* + 4%k,0) " &l + e al + e
kS, ~ HS,) . a, o, = HDAA a,, s, 44,0
t il £T /R : ‘ 1 9 !
Str th* + A%, LA el + e Al +¢
s, ky ‘i(S.,,- —;-,H-’Sm) Efa4] ay, 7ol ZHOA, “AL -y, 'G’:.-‘L[ AH
1K=+ A%k, %) dl + 4 al + e
~k & (S, — HS,) =a.,a,,0.31 = H) ~ay,3,,0,°
Siim h*+ A%, % ELfA {1 +e 11+e
~k K7k (S, = HS.) . —ay,a,,4,.51 - HOY —a,,a,,0,°H
) ATRLS, s 1 - 11817,
e i+ A%k, L i+ o (1= e

Here, e = 24 [(2/, = )a,, + 2),a,,]

presence of the last term, (J,J, — J)2S,,. in (10) of the part 1.
If the three-dimensional zanisotropic exponential auto-
covariance (2} is used for the random process, the resulting
head variance is infinite due to singularity of this term at the
origin. This mathematical difficulty can be circumvented if &
modified exponsntiai autocovariance function [Naf. 1578;
Gethar and Axness, 1983] is used

R &) =, [L ~ &% /4, 5] exp [—5] 25)

2

where 57 = &, %/4,7% + &;%/4,% + &,%/4,° or the mean gradient
is restricted only in the x, direction and is assumed to be 2
unit gradient. The assumption of the unidirectional unit gradi-
ent simpiy eliminates the singuiarity. In the following analysis,
resuits for the head variznce and the effective hydraulic con-
quctivity are obtained with the exponentizi autocovariance for
both @ and f processes with the unidirectional, unit gradient
assumption.

The resuitant head variance is similar to that obtained in
the case where the # is a deterministic constant with the excep-
tdon that the ¢.* in (3) is repiaced by &1 — {H)* and (¢,?
+6,°H) for cases 1 and 2. respectively. Therefors the head
variance for case 1 can be expressed by

[ [2 dI
Jo Up? = 7 + pigr + 1]

ey =T, %0, 1 — HO%, 2 (26a}

Similariy. the head variance for case 2 is given by

ot =J Mot + o tHDL Y

[“ £ de
b Lot =Dt +p7gr + 13
(266}

Effective Hydraulic Conductivity

To derive the expression for the effective hydraulic conduc-
tivity tensor we again assumes the hydraulic conductivity at
the local scale is homogzaneous and isotropic, and the medium
is perfectly swratified {p— x): the generalized effective hy-
draclic conductivity relationship (12} of part | is empioyed.
However. the variance and covariances in (12} are more com-
piicated because of the randomness of x. The spectral or cross-
spectral relationships needed to evaluate the variances or co-
variances in {12} for the case where J, =1 and J, —J; =10
are summarized in Table i.

Since the mean gradient exists only in the x, direction, to
obtain a complete description of the hydraulic conductivizy
tensor we have t0 ¢xamine the case where the stratification of
the soil formation is inclined as shown in Figure 3. Thus a
coordinate transformation of the spectral relationship as em-
ployed in the constant x case is used. After the transforrmation
and the integration over wave number, the vadancss and co-
variances for cases 1 and 2 are listed in Table 1.

Substituting the results in Table | into {12, the mean flux in
the x, direction with J, = 1 becomes

el —HY 1= 2a,,]
Ea.] = m{l + L e }fl @7
- i -rga:l_
for case 1, and
. (0,2 + Ho, [ —2a,,]
Elg,] =K..,{z + L —= N, (2%
Fa _l ‘—gﬂ“_‘

for case 2.

Since the mean gradient exists only in the x, direction, {ea.,
Jy=J; =0, the mean flux equation in the x, direction for
case | becomes

¢h
Efg.]= ng[f z :]

X3

J.2y:84a
= Kol — HO) JL(—I:%-G—T-)-} (29)
and
éh
Eq:] = ,E[f C—;]
= Ko, + ., H )L —I. “;:’ﬂ (30)
- 11
for case 2.

At this point it is clear that the difference in the effective
hydraulic conductivities of cases | and 2 liss in the factor
o, = HOP and o, + 6, °H* The following anaiysis will
focus on the effective hydraulic conductivitv of the medium in
which a and f are staustcally independent. Therefore the =i~
fective hydraulic conductivity tensor components can be writ-
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ten as follows:

[ | T 2 2 _
g, =ELQ:4 =K {1 -.-(df - H°6,7) | 1 —2a;,
4 2 | +ga;,
g (1)
= L4932 > 2ppnd T 81182
K, = = =Ko, + 0, H ) se—miits
21 J’] m(c_f )[(I —,ga“)]

Because the effective hydraulic conductivity has a symmetric
second-rank 1ensor property, the hydraunlic conductivity in the
x; direction in the unprimed system, K,,, can be obtained
through the relationships between K,; and K,, [Yeh 1982].
Finally, the effective hydraulic conductivity tensor K,; in the
unprimed coordinare system is

K, = K,,,[l + (o, =0, H})1 - 2‘111):’

Al + ga,,)

_ ~ {o g PHM1 = 12:|
KZZ =K - Krn 1 (32}
3 [ 2(1 +ga;,;}
— = —a,;a
Ky =Ry =K, lo* + o2 B —1 2L
' H s {i +gay)

The principal effective hydraulic conductiviries thus become

N (¢, + 0,2 B
Ry =k |1 -4 2% 20
H K,,,[ 21 +gayy)

i 2. o 2pr2
= K, exp [_________{of "9 H ):|
A1 + gay ;)

~ _ (6,* + ¢,2H*
Rhy =Ky = Km[l et }]
A1 + gay,)
e, + ¢,2HY
L A +ga;4)
Note that the effective hydraulic conductivities of media with
perfectly corralaied a and [ can be obtained by replacing ¢,

+ ¢,°H? with ¢ ,* (1 — {H)2. The anisotropy ratio of the prin-
c‘pal hydraulic conductivities is then

i
i

K., 1 ~ HI¥
22 _ e [ o0~ By (34a)
K, 1 +ga,,

for media with perfectly correlated g and [ fields and
K, !-(o'fz + g 27
== =exp| ——"—- 345}
Ky P [ 1+ga, (

for media with statistically independent a and f procssses.

SUMMARY AND DiIsCUSSION OF RESULTS

Results from the analysis of flow with statistically aniso-
ropic In K, and constant parameter x reveal that the head
variance resulting from a steady state infiltration in aniso-
tropic media is dependent on the statistical properties of the
media. ¢,%, /,, i, and mean gradient J. The effect of the
aspect ratic of the medium on the head variance is shown in
Figure 1. For flow normal to the bedding of a perfectlv strati-
fied soil formation with infinite aspect ratio, the head variance
grows infinitely. This result agrees with the result of one-
dimensional fow when the exponential covariance function is
used. Conversely, head vanance vanishes at a zero aspect
ratio. which represemts the situation where flow is parallel to
the bedding of a perfectly stratified soil formation.

Figure 2 illustrates the relationship berween the effective
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unsaturaled hydraulic conduectivity and the aspect ratio. Gen-
eraliy. the effective unsaturated conductivity foiiows the well-
known behavior of saturated fiow in a deterministic medium.
The hydraulic conductivity tends to be the arithmetic mean if
the medium has a small aspect ratio, which represents the case
of flow parallel to the stratification. In a medium with 2 large
aspect rauo representing the case of flow normal to the strat-
fication, the effective hydraulic conductivity becomes less sen-
sitive to the aspect ratio as the correlation scale and pore-size
distribution parameter of the medium increase. In this case, it
approaches the geometric mean.

The multidirectional flow analysis derives all the compo-
nents of the unsaturated hydraulic conductivity and shows
that unsaturated hydraunlic conductivity has the properties of 2
symmetric tensor of rank two. The effect of x4 on the principal
unsaturated hydraulic conductivities is depicted in Figure 4. It
1s found that the effective hydraulic conductivities in the direc-
tons parallel and normal to the stratification are arithmetic
mean and harmonic mean, respectively. However, they con-
verge to the geometric mean as 24 becomes large.

The effect of onentation of the siratification on the ani-
sotropy ratio of unsaturated hydraulic conductivity is illus-
trated in Figure 3. The orientation effect is significant at inter-
mediate values of a4, and it is irrelevant at other possible
ranges of the parameter. Overall, the degres of anisotropy
depends on o'fz, %/, the magnitude and the direction of the
gradient, and the orientation of the stratification. A large
gradient, x parameter, and correlation scale can reduce the
anisotropy ratio. In general, the anisotropy ratic of the un-
saturated hydrauvlic conductivity is smaller than that of saru-
rated hydraulic conductivity. This can be ascribed to the as-
sumption of a constant x and the effect of the nonlinear nature
of unsaturated flow. Because the parameter « may vary signifi-
cantly in the field. the anisotropy ratio derived from the con-
stant « assumption may not represent that anisotropy ratio of
the natural soils.

Finally, the head variance and the effective hydraulic con-
ductivity are evaiuated for the medium in which in K, and =
are considered to be stochastic processes. Because z is a sto-
chastic process, knowledge of the cross-covariance between
the a and f processes is needed o evaluate the head variance.
To simplify the znalysis, two cases are considered: case 1, in
which « and In K, are perfectly correlated, and case 2, in
which z and Iz K, are statisticaily independent. When J = 1.
both cases yield similar forms of head variance as those
derived with the deterministic pore-size distribution parameter
assumption. However, the head variance under these circum-
stances is proportional to ¢,.*(1 — {HY or (¢,° + ¢, H?), in-
stead of ¢ fi as in the constant « case. Thus the head vanance
can be significantly larger depending on the magmitude of the
mean capillary pressure, especially for soils with a large vari-
ance of the x parameter, o,°

The other effect of the variation of = is on the anisotropy
ratio of the effective unsaturated hydraulic conductivity. The
results in this case reveal that the ratio depends strongly on
the mean capiliary pressure. The ratio also depends on the
magnitude. and direction of the mean gradient, the products
of correlation scales. the mean 2 and the orientation of the
stratification. In other weords. the anisotropy of effective un-
saturated hydraulic conductivity is dependent on the moisture
content and the hvdraulic gradient.

The effect of the cross-correlation between the a and f pro-
cesses on the z2nisotropy ratio ¢an be elaborated from (34a)
and (34b). As shown by {344\ the corrsiation tends 1o reduce
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the znisotropy at low mean capiilary pressure. The medium
becomes isotropic at the moisture content whers H equal 10
£~ After this critical pressure, the anisotropy ratio increases
with capillary pressure. Although the a and f processes in the
field may be neither perfectly correlated nor independent, the
behavior of field anisctropy will likely fall in between the
predictions of {34a} and {348).

It is of importance to recognize the limitations and assump-
tions employed in this study. The theoretical analysis is car-
ried our with the assumption that o,% and ¢,* are small in
some sense. The validity of omitting the second order terms in
developing the perturbation equations may be questioned,
since no exact solutions are available for comparative pur-
poses. However, experience with saturated fow indicates that
the perturbation results are quite robust [Gugjahr and Gelhar,
1981; Mizeil er al, 1982], and the comparisons with Monte
Cario simulations for unsaturated low by Anderson and Sha-
piro [1983] are quite favorabie. Similar questions apply to the
exponential generalization of the effective hydrauilic conduc-
tivity approximations; a more detailed discussion of this
aspect is offered in the work by Gelhar and Axness [1983].
There is 2 need for accurate multidimensional Monte Carlo
simulation in order to evaluate of these approximations.

The exponential relationship between the conductivity and
capillary pressure head assumed in the analysis merely sim-
plifies the mathematics involved. Other [functions can be
adopted to obtain similar resuits. In fact, the exponental re-
lationship has been widely used in many pracrical studies of
unsaturated flow. Cne of the disadvantages is that this re-
lationship may not adequartely describe the behavier of the
unsaturated conductivity of some soils, especially coarse-
textured soils near saturation.

In the development of spectral relationships of capillary
pressure head, log-saturated hydraulic conductivity, and the x
parameter, siationarity of the head process was assumed in
order to use the Fourier-Stieltjes representation theorem.
Local stationarity is 2 reasonable assumption when mean hy-
draulic gradient 15 constant but is questionabie under Jow
conditions involving abrupt changes in mean capillary pres-
sure.

The assumption that both the x parameter and log-
saturated hydraulic conductivity have the same correlation
scale and covariance functon Is 2 convenience in the analysis.
Similar analyses can be carried out for more compiex prob-
lems where the statisticzl properties of the two parameiers are
not necessarily equal. Generzl behavior of the results should
remain similar,

The cross-covariance function of x and In X, may be impor-
tant in field applicaticn of the stochastic resuits. Analyses have
shown that the difference berween the results of cases 1 and 2
are significant only at low czpillary pressure ranges. The re-
sults of these two cases should provide the upper and lower
limits of the results of any realistic problem.,

Finaily, it should be pointed out again that the stochastic
results are in the sense of ensemble average or ensemble vari-
ance, In order to apply the results of the stochastic analysis to
a field situation. it is necessary 0 invoke the ergodic hypoth-
esis. This hypothesis impiies that the scale of the problem
under study has to be many times larger than the correlation
scale of the input procsss. Thus an equivalence between en-
semble average and space average can be achieved.

The theorstical developments in this paper demonstrate two
imporant phenomena which are a consequence of the varia-
bility of the parameter x:

1. The variance of the capillary pressure head increases
with increasing mean capillary pressure.

2. The anisowropy of effective unsaturated hydraulic is
sirongly dependent on the mean capillary pressure,

Qbservarions and applications relating to these features are
explored in part 3 of this series.

APPENDIX: EVALUATION OF 4,7 IN (62) AND (6B)

Tke variance of the head perturbation can be obtained by
integrating the head spectrum (4} over wave number space. To
do so, we let u, = 4k, (Do sum on i) and assume A, = 4y = A
The integral can be written as

k-]
223 24 fr0
, Jotatp N ,
0,° = ——tm—— uy* du, duy du,
22 1

-=

Al 2+ uy? Fus Y + ot AL+ B! (AL}

where p = 4/i, and g = 4, 8. The integral can then be evalu-
ated as {ollows. First, we can express (Al} in spherical coordi-
nates:u, = u cos @, u, = ucos ¢sin b, and uy; = usin cos 4,
and Integrate over 9. The integrai becomes

2% 20, "
T

[. J u* cos? @ sin @ 4 du
-0 Q

- {[u(sin® © + p? cos? ©)F + p*g% cos? YL + P!
{A2)

Next. integrating (A2) over &, which can be achieved by the
partial fraction technique, yields

N NS S zpa.J.l ¢ dr
: A N (PR eyt

where t = cos @.

Finally, the integration of (A3) over r can be obtained by
utilizing the formula provided by Dwight [1961, section
160.22, p. 391, and it leads to the head variance expressed by
(6a) and (65).

The technique used here to integrate the head variance can
be directly employed to evaiuate the integrals related to the
variances and ¢ovariances in part 3.

(A3)

REFERENCES
Andersson, J.. and A. M. Shapiro. Siochasic analysis of one-
_ dimensionai sieady state unsaturated fow: A comparison of Monte
Cario and perturbation methods, Warer Resour. Res., 19, 121-133,
1983,

Byer. E. and D. Siephens. Stadstical and stochastic analysis of hy-
draulic conductivity and particle size in a trivial sand. Soil Sci. Soc.
Am. J_ 47, 1072-1080. 1983,

Dwight, H. 8., Tables of integrals and other mathematical data, 336
pp- MacMillan, New York, 1961,

Gethar, L. W, and C. L. Axness. Three-dimensional stochastic analy-
sis of macrodispersion in aquifers, Warer Resour. Res. 19, 161-180,
1983.

Gutjahr, A. L., and L. W. Gelhar. Stochastic models of subsurface
fow: Infinite versus finite domains and stationarnity, Warer Resouwr.
Res.. 17, 337-350. 1981

Mizell, 5. AL A L. Gutahr, and L. W. Gelhar. Stochastic analysis
spatial variability in rwo-dimensional steady groundwater flow as-
suming stationary and nenstationary heads. Warer Resour. Res., (8,
10531067, 1982

Mualem, Y.. A catalogue of the hydraulic properties of unsaturated
soils. Deveiopment of methods. tools and soiurions for unsaiurated
flow with application 10 wartershed hvdrology 2ad cther feids, Res.
Proj. 442, Techmon Israel Inst, of Tech.. Haia, [976.



464 YEH ET AL : LUNSATURATED FLOW ANALYSIS 2

Naff. R. L. A continuum approach 1o the study and determination of
fieid longitudinal dispersion coefficients. Ph.D. dissertation, 176 pp..
N. M. Inst. of Min. and Tech., Socorro, June 1978.

Russo, D.. and E. Bresier. Soil hydraulic properties as stochastic pro-
cesses. [, An analysis of field spatial variabitity. Soil Sci. Soc. Am. J..
45 699-704. 1981.

Smith, L., A siochastic aralysis of sieady-state groundwarer flow in a
bounded domain. Ph.D. thesis, 325 pp.. Univ. of B. C.. Vancouver.
1978,

Warrick, A. W. G. J. Mullen. and D. R. Nieisen, Predictions of the
Soil Water flux based upon field-measured soil-water properties.
Soil Sct. Soc. Am. J. 41, 14-19, 1977.

Yeh, T.-C., Stochastic analysis of effects of spatial variability on un-
saturated fow, Ph.D. dissertation. 249 pp. N. M. of Min. and
Tech., Socorro, 1982

Yeh. T-C.. L. W. Gethar, and A. L. Guyahr, Stochastic Analysis of
unsaturated flow in heierogeneous sotl. [, Statistically isotrapic
media. Water Resour. Res., this issue.

L. W. Gelhar, Department of Civil Engineering, Massachusetts in-
stitute of Technology. Cambridge, MA 02139.

T.-C. Yeh. Department of Environmental Scieness. University of
Virginia. Chariottesville. VA 22903,

A. L. Gatjahr, New Mexico Institute of Mining and Technology.
Socorro. NM 02138

{Received January 17. 1984:
revised December 10, 1984;
accepted December {9, 1984)



WATER RESOURCES RESEARCH, VOL. 22, NO. 5, PAGE 843, MAY 1986

Correction to “Stochastic Analysis of Unsaturated Flow in Heterogeneous
Soils, 1 and 2,”” By T.-C. J. Yeh,
L. W. Gelhar, and A. L. Gutjahr

In the paper “Stochastic Analysis of Unsaturated Flow in
Heterogeneous Soils, 1 and 2” by T. C. Yeh ct al. {Water
Resources Research, 21(4), 447-456 and 457-464, 1985), an
important correction in some equations has been noticed.

The statement right after equation (4¢) on p. 448, “Then
after neglecting the product of @ and A ...” should be deleted.
Equation (5a) ought to be

InK=F+f—Ah— aH — ah
and (5b) is

In = log, (5a)

In K,, = E[ln K] = F — AH — E[ah] (5h)

in addition, equation (11) should be written as

g, = —K gﬁ‘i = exp(F — AH)[l +{f—aH — Ak — ah)

i

+(f#aH——Ah—ah)2+._.:Hiji+£fi_:l

2 o B

i
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Note that the effects of the additional term E[ah] are incor-
porated in subsequent equations simply by expressing K, as
in the corrected (5b). This additional term is nonzero only for
the variable o case (part 2), in which case the required E[ah] is
given in Table 1. This correction does not affect the ani-
sotropy ratio calculations in part 3 because it is an isotropic
effect.

In equation (6a), on p. 458, >0 should be >0,

In equation (6), on p. 458, <0 should be <0. And if [p*g?
— 4p® — 1)] = O where a = p?g and b = 2p* — 1}.

oy = J %024 % p*/[3ala + b)*b*]

In Table 1, on p. 461, the E[gj,] for case 2 should be
positive, and, on the first line, 5, should be replaced by ¢,
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