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Abstract.

A method is developed for the conditional (Monte Carlo) simulation of steady

state flow and transient transport from point sources in variably saturated porous media.
It combines the geostatistical method, a linearized approximation of the soil water tension
perturbation solution, and a finite element numerical model. The method is used to
investigate the usefulness of conditional simulation for predicting solute transport under a
variety of sampling network designs applied to a number of hypothetical soils. Saturated
hydraulic conductivity data yield the largest reduction of conditional uncertainty in
relatively wet soils with mild heterogeneities. In highly heterogeneous soils or under dry
conditions, soil water tension data by themselves, taken at a sampling density of one to
two correlation scales along the expected mean travel path, can greatly reduce prediction
uncertainty about solute concentration. Parameter uncertainty about statistical properties
of the independent random variables becomes less important as the number of
conditioning data increases. However, even with a very high number of sampling data,
uncertainty of predicted concentration levels remains significant.

1. Introduction

Stochastic analysis is a useful approach in assessing the un-
certainty associated with predicting migration of contaminants
in heterogeneous geologic media under variably saturated con-
ditions. Unconditional numerical stochastic simulations have
been introduced and compared to existing analytical tech-
niques in a companion paper [Harter and Yeh, this issue]. These
methods exploit the overall statistical information contained in
a data set of those field parameters which constitute a hypo-
thetical unsaturated hydraulic conductivity function, that is,
saturated hydraulic conductivity, K, and soil pore size distri-
bution parameter, . But they do not account for local, deter-
ministic field measurements of K, and « (“direct” conditional
information); nor can they account for important information
contained in measured data related to K, and «, such as the
soil water tension /# (“indirect” conditional information).

Conditional stochastic analysis, which takes advantage of
field data at specified locations, has been developed for and
applied to a number of groundwater problems [Cliffon and
Neuman, 1982; Dagan, 1982, 1984; Delhomme, 1979; Graham
and McLaughlin, 1989a, b; Rubin, 1991; Smith and Schwartz,
1981a, b; Zhang and Neuman, 1995a, b, c, d). To date, however,
no attempt has been made to analyze either unsaturated flow
or unsaturated transport with conditional stochastic methods.

Conditional simulation of unsaturated flow and transport
distinguishes itself from the conditional simulation of satu-
rated systems. Prediction uncertainty depends not only on
knowledge about saturated hydraulic conductivity but also on
knowledge about entire functional relationships such as the
unsaturated hydraulic conductivity function. Hence the infor-
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mation content of various field data, that is, the degree to
which prediction uncertainty is reduced by one type of field
data or another, is expected to strongly depend on soil water
tension (or soil moisture content).

The objectives of this paper are to develop an efficient con-
ditional simulation algorithm, to investigate the role of both
indirect information (soil water tension data, #) and direct
information (data of f and a, where f = In K; and a = In «),
and to analyze the role of sampling network design with re-
spect to reducing uncertainties of conditional stochastic pre-
dictions of nonreactive solute transport under variably satu-
rated conditions.

2. Conditional Monte Carlo Simulation:
Methods

The general implementation of Monte Carlo simulation
(MCS) has been described by Harter and Yeh [this issue]. Here
we generate conditional realizations of f and a together with a
conditional approximate solution /# (conditional ASIGNing;
see below). The realization of each of these three random
space functions (RSFs) is passed to the flow and transport
model (modified method of characteristics (MMOC)) [Yeh et
al., 1993], which computes steady state soil water tension
through a finite element approximation of Richards equation,
flux distribution through a finite element approximation of
Darcy’s law, and transient solute transport by using a modified
method of characteristics. After completing either 150 or 300
realizations (see Table 2), the appropriate statistical sample
parameters are computed from the output of the MCS.

2.1.

The conditional random field generator developed for this
study is based on geostatistical work by Matheron [1973], Jour-
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nel [1974], Journel and Huijbregts [1978], and Myers [1982]. To
conduct the conditional simulation, we assume that the uncon-
ditional RSFs f, a, and & are Gaussian stationary processes.
For notational convenience, f, a, and & are combined into a
RSF vector X. The term “random field” is used to denote
individual realizations of the RSF X. We assume that the
moments of f and a as well as the mean, H, of soil water
tension, &, and the geometric mean of «, I', are known. The
problem of parameter uncertainty is addressed later in this
study.

An estimate of conditional mean (X)* and conditional co-
variance Ey is obtained by simple cokriging [Dagan, 1982,
Myers, 1982]. Available measurement data of f, a, and & are
combined in a vector of known data X, = (X,, X,,, X;,)7,
where T indicates transpose, and subscripts f, @, and / indicate
the type of data. Covariance matrix C,; = (X,X7]) is computed
using appropriate covariance and cross-covariance functions as
described below. Denoting the vector of unknown data X, =
(X5, X,,, X5,)" and defining an unconditional covariance
matrix C,, = (X,;X2), the (simple) cokriging system of equa-
tions is

CuA,=Cy, (1)

where A, is the matrix of cokriging weights, from which we
obtain (X,)* through the cokriging equation

(X' = (Xo) + Ay (X, — (X)) (2)

where (X;) and (X,) are unconditional ensemble means of X,
and X,, and A,, = A7,. The “estimation error covariance,” or
conditional covariance, E,, at nonmeasured locations corre-
sponds to the simple cokriging covariance and is given by

E;, = Cpn— Ay Cp, (3)

Note that individual entries in the conditional or error covari-
ance matrix E,, are equal to or less than entries in the uncon-
ditional covariance matrix C,,; that is, conditional variability
decreases with additional information. At measurement loca-
tions, error variance is zero, provided that measurement errors
are negligible.

Conditional simulation of X with moments (2) and (3) pro-
ceeds as follows. After first generating unconditional random
fields of f and a with a spectral random field generator [Gut-
jahr, 1989] and determining an unconditional solution 4, we
define the unconditional random field X, = (X, X,,, X,;,)”.
Conditional random fields X that are consistent with (1)—(3)
are constructed through

X{ = (X)* + (X, — (X)) = (X)* + e, (4)

where (X,)¥ is a cokriged estimate of X given “measurement”
data X,,. (X,)* is the simulated equivalent to (X)*: It pre-
serves data X, ; in the unconditionally generated random fields
at and only at locations {x;, - - -, x,,, }, where measurements are
available in the real field site as well. It gives cokriged esti-
mates (X,,)* at all other locations {x,, ,, ***, X, } given un-
conditionally simulated data X;, from known data locations.
The term (X; — (X,)*) is a realization e, of the estimation
error incurred by estimating simulated data X; through kriged
values (X,)*. Simulated error e, is added to the originally
estimated conditional mean (X)* to obtain one possible con-
ditional random field X{. It can be shown that the simulated
estimation error e, has the same conditional moments (3) as
the real estimation error e = (X — (X)¢) because unconditional
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probability density functions (pdfs) of real and simulated fields
are identical (neglecting the possibility of measurement and
moment estimation errors), and because conditioning occurs at
the same locations at the field site and in the simulations
[Journel, 1974; Delhomme, 1979]. For a large number of sam-
ples thus obtained the sample mean and sample variance of X§
will converge in the mean square to the true conditional mean
and variance, that is, the kriging estimate (2) and kriging vari-
ance (3) of X.

In our model, following the approach by Gutjahr et al.
[1992], (4) is rearranged and kriging equation (2) is used to
explicitly write kriged terms in (4) such that

X5 = Xo + An(X; = Xy) (%)
where X, is the unconditionally generated mean removed
realization of f, a, and h; X, is the array of unconditionally
simulated data at the particular locations, where measure-
ments of the same variable are available in the field site (also
unconditional mean removed); and X§, is the conditional
mean removed realization f or a“. Equation (5) is evaluated
once for each realization of each RSF.

2.2. Conditional ASIGNing

If head measurements are part of X, (indirect conditioning),
unconditional realizations of 2 must be computed from uncon-
ditional realizations of f and a to fill the one-dimensional array
X,,. Conditional flow simulation therefore requires that the
unsaturated flow equation be solved twice: once to obtain the
unconditional random field /# from the unconditionally gener-
ated realizations f and a, and, eventually, a second time to
obtain the conditional nonlinear solution #¢ from the condi-
tional realizations f and a“.

Normally, unconditional head solutions # would be com-
puted using standard finite difference or finite element models.
For steady state unsaturated conditions, an efficient method is
ASIGNing [Harter and Yeh, 1993], which combines the spec-
trally derived first-order, linear approximation of head, /4,
with the finite element model MMOC?2. For this study, an even
more efficient approximation is chosen by applying the linear
approximation Ak (f, a) directly to fill X;;. A linear head
solution /A, is cogenerated with random fields f and a by
explicitly solving for the spectral representation of &, dZ,(k) =
f(dZ«(k), dZ,(k), H, I') and applying a numerical Fourier
transform [Harter, 1994]. Using a linearized unconditional so-
lution 4, in the conditioning process is consistent with the
linear estimation procedure (5).

Moreover, a conditional linear approximation 4§ of the con-
ditional head solution is obtained by estimating 2¢ with (5),
that is, by including /1 (f, a) into X,,. Then h{ = X5, in the
array X$,, in which A{ is used as the initial approximation of
the nonlinear finite element solution A%y to the unsaturated
flow equation given the conditional realizations f° and a“. This
is in principle equivalent to the ASIGNing procedure for un-
conditional flow simulations and is therefore called conditional
ASIGNing. A flow chart of conditional ASIGNing and MCS is
given in Figure 1.

Conditional random fields 4] obtained from (5) are accurate
enough to allow the numerical algorithm to converge efficiently
to the conditional finite element solution A%g( f€, a€). In this
work, conditional ASIGNing has successfully and consistently
been applied to soils with o] = 3.2, where o} is the uncon-
ditional variance of the logarithm y = In K of the unsaturated
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Figure 1. Schematic overview of flowchart of the conditional simulation technique including conditional

ASIGNing. “Paper 1” refers to that by Harter [1994]; “paper 2” refers to that by Harter and Yeh [this issue].

hydraulic conductivity K. Use of the spectrally derived linear
head solution has two advantages in the conditioning algorithm
(5). It allows for a very efficient evaluation of the unconditional
head field needed to obtain X, (increase in efficiency over use
of FE solutions by 3 orders of magnitude). Further, by includ-
ing it into X, an initial approximation of the conditional head
field is obtained such that the conditional finite element solu-
tion converges approximately 2 orders of magnitude faster
than without such an initial approximation. The total compu-
tational savings are so enormous that an entire conditional
Monte Carlo simulation of unsaturated steady state flow with
several hundred realizations can be carried out more efficiently
CPU-wise than a single conditional realization based on finite
element solutions alone (i.e., without using the linear, spectral
head solution). Because computational efforts to generate con-
ditional random fields and conditional initial head solutions
are minor compared to the CPU time for numerical flow and
transport computations, the actual CPU time for a single re-
alization (including conditional random field generation, flow,
and transport computation) is only slightly more than that of
unconditional realizations.

2.3. Covariances and Cross Covariances for the Cokriging
Matrix A,,

Cokriging system (1) has a solution only if C; is a positive
definite matrix [Journel and Huijbregts, 1978]. In kriging (direct
estimation) positive definiteness is assured by fitting field data
to a valid functional form of the covariance, such as the expo-
nential, spherical, or Gaussian models [Isaaks and Srivastava,
1989]. In cokriging (indirect estimation), C,;; contains cross-
covariance terms. An empirical method to estimate cross-

covariances is described by Myers [1982]. In our problem, co-
variance functions of f and a as well as mean head, H, and
geometric mean of «, I', are assumed to be known; hence
cross-covariance functions between f and &, C,, and between
a and h, C,,, as well as the covariance function of &, C,,,, in
the covariance matrices C,; and C,, can be determined by
first-order stochastic analysis or by implementation of MCSs of
unsaturated flow [Harter, 1994].

We found that analytically derived covariance and cross-
covariance functions yield invertible (positive definite) matri-
ces C,; and C,,, but may have significant errors in their mag-
nitude, as shown by Harter [1994]. On the other hand,
covariance matrices, C;; and C,,, derived from MCSs are
stochastically accurate to within the sampling error of such
simulations, but they may not be invertible, particularly if head
and flux variances are very large, owing to inherent random
fluctuations in the sample (cross-) covariance fields. For our
conditional simulation we therefore use a modified analytical
(cross-) covariance solution based on calibration of the invert-
ible analytical (cross-) covariances against numerically deter-
mined sample (cross-) covariance functions: Analytical func-
tions are multiplied by a correction factor (defined separately
for each (cross-) covariance function and for each example
soil) such that modified analytical solutions match nonlinear
MCS sample (cross-) covariance functions with minimal error.
Calibration of analytical cross-covariance functions is imple-
mented by visual matching. Head covariance is calibrated such
that the modified analytical solution for the variance exactly
matches the numerically determined variance. Preliminary ex-
periments were implemented and it was found that results
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Table 1.
Conditional Transport Analysis
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Input Parameters for the Various Hypothetical Soil Field Sites Used in the

2

Site General Description 0'/2 fopm p r H Ax Az Ay

3 a2 = 0.85; wet, isotropic 1.0 0.01 0 0.0 =15 0.1 0.1 0.5
12 a';E = 0.53; wet, anisotropic [N 1 [N [N 0.3 [N 3.0
21 o2 = 3.2; dry, anisotropic 1 -30.0 03 3.0
15 a'é = 1.5; dry, anisotropic . e e -10.0 0.3 3.0
28 oy = 1.8; wet, anisotropic 2.25 0.04 e 0.3 3.0

Here afz, variance of f = log K, (log: natural logarithm); o2, variance of a = log o; Pay» correlation
coefficient between f and a; I', geometric mean of a [m~']; Ax, horizontal discretization of finite elements

[m]; Az, vertical discretization of finite elements [m];

A, horizontal correlation length of f [m]. Vertical

correlation length of f is 50 cm in all example soils. Where not otherwise indicated, parameter values are

identical to those of 3.

from the Monte Carlo simulation changed insignificantly
within the range of potential error in the calibration proce-
dure. However, significant changes in the shape of the condi-
tional mean and variance contour lines of solute concentration
were observed in one example (soil 15), if the correction factor
for C,;, was doubled. While not a rigorous sensitivity test, this
shows that it is important to adjust the analytical (cross-) co-
variances to match those obtained from MCS. Further research
is needed to quantify exactly potential calibration errors.

2.4. Nodal and Elemental Properties in the Finite Element
Model Versus Grid Properties in the Spectral Random
Field Generator

In those finite element realizations that serve as hypothetical
field sites for this study (see below), head, #, and concentra-
tion, ¢, are nodal values, while saturated hydraulic conductiv-
ity, K,, and pore size distribution parameter, «, (and hence f
and a) are element properties. In contrast, the spectral ran-
dom field generator and conditioning algorithm assume iden-
tical grid size and support for all variables. For the purpose of
conditional simulation it is simply assumed that the support
scales of both “measured” nodal and “measured” elemental
properties are identical, and that the lower left node of each
element has the same support and location as the element
itself. This introduces a small error in the computation of cross
covariances (which are functions of support and of distances
between measurement points). The error is negligible since the
element discretization is rather small compared to the corre-
lation scale. To be consistent, the subsequent assignment of
nodal and elemental properties in the finite element model
from the conditional random field realizations f and ¢ and
the initial head /4 follows the reverse order: The f, a, and &
values at the ith column in the jth row of the conditional
random fields are assigned to the ith element in the jth ele-
ment row ( f, @) and to the ith node in the jth nodal row (%),
which is the lower left node to the ith element in the jth
element row.

3. “Field Test Sites” and Sampling Strategies:
Methodology
3.1. “Field Test Sites”

The so-called field sites that are investigated here are com-
puter-generated hypothetical soil cross sections. In these arti-
ficial field sites, “field” hydraulic properties and the movement
of the contamination plume can be perfectly sampled. Physical
processes governing flow and transport of the so-called real
plume and the heterogeneous properties of the soil are per-

fectly known. Measurement errors, parameter estimation er-
rors, and upscaling problems are neglected for the moment.
Only such computer-generated field sites allow a rigorous anal-
ysis of the information content of measurement data that can
be retrieved through conditional stochastic simulation.

Five synthetic field sites were selected to evaluate effects of
conditioning using relevant field data. Table 1 summarizes the
characteristics of the five field sites. Detailed descriptions of
these types of field sites are reported by Harter and Yeh [1995].
Each field site is a single, randomly chosen realization from an
unconditional MCS. Four of the sites are anisotropic with v =
Ar/As, = 6, where Ay, and A, are correlation scales of f in the
horizontal and vertical directions, respectively. One site is iso-
tropic. Mean soil water tension ranges from —1.50 to —30.0 m.
Together with the range of textural variability the resulting log
unsaturated hydraulic conductivity variance at the five sites
ranges from 0.5 to 3.2.

3.2. Sampling Strategies

We assume that one, two, or all three types of measurements
are available: K, measurements; measurements that determine
the unsaturated hydraulic conductivity function, that is, K; and
a measurements; and measurements of soil water tension,
which is assumed to be at steady state. For practical purposes,
steady state flow conditions are achieved when temporal vari-
ability in & is much smaller than spatial variability in 4, gen-
erally at depths of at least one to several meters depending on
soil type and climate. The method is therefore strictly applica-
ble only where the thickness of the unsaturated zone is con-
siderable, for example, in arid and semiarid climates. It is
under such conditions that assessment of unsaturated solute
transport is particularly important.

Two basic sampling networks were designed for each of the
three physical variables f, a, and /: a “sparse” sampling net-
work and a “dense” one (Figure 2). The sparse sampling net-
work (Figure 2a) consists of measurement locations along
three vertical “boreholes” (four “boreholes” at site 28) near
the plume source spaced one horizontal A, apart, with mea-
surements at every 2., depth interval. No data are sampled
from an area within 2\, of the bottom boundary of the sim-
ulation domain. The center column intersects the source area
of the solute plume, where five additional measurements are
made. The total number of data points in the sparse network is
41 (53 at site 28).

A dense sampling network (Figure 2b) consists of double the
data density of the sparse sampling network, that is, 0.5\, in
the horizontal and 1A, in the vertical. Also in the dense
sampling network, data are sampled throughout the entire
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Figure 2. (a) Sparse measurement network and (b) dense

measurement network for the RSFs f and a (large circles) and
for 4 (small circles). The source area is indicated by the rect-
angular box near the top of the simulation domain.

simulation domain, resulting in a total of more than 300 data
points. Only an area within 2., of the vertical boundaries is
excluded from data sampling. Measurements of K and « are
obtained at identical locations. The sampling grid for head
measurements is shifted relative to the sampling grid of K and
a such that a head measurement point is at the center between
four adjacent K; measurements. The dense sampling network
also includes measurements at all nodes or elements within
and immediately adjacent to the contamination source, that is,
the properties of the source area are perfectly known in the
dense sampling network. Monte Carlo simulations are imple-
mented with various combinations of f, a, and & sampling
networks as listed in Table 2.

4. Effects of Conditioning on Unsaturated Flow

Effects of conditioning on predicted soil water tension and
flow regime are demonstrated in Figure 3 using results of two
conditional simulations, A and G (Table 2), of field site 28.
This field site, used as a “real world” analog, is a vertical cross
section of 12.8 m depth and 24 m width. The soil is anisotropic
with correlation scales for f and a of 3 m horizontally and 0.5
m vertically. Unsaturated hydraulic conductivity variance, o,
is 1.8. Soil water tension distribution and stream lines at this
“real” site are shown in Figure 3a. In the center of the cross
section a wide but relatively thin lens of near zero soil water
tension overlies a dry area with tensions of about —2.50 m. The
dry area reflects a flow barrier which causes flow at and above
the thin wet lens to be predominantly horizontal. Also illus-
trated in this figure is a distinct diagonal flow channel imme-
diately beneath the contamination source (rectangular box
near the top of the illustrated flow domain).

Conditional simulation A is based on a dense data network
of all three variables f, a, and &, while G is based on only 53
soil water tension data (sparse network) from four tensiometer
nests. The conditional mean soil water tension fields and
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Table 2. Classification of the Conditional Simulation Types

Conditional Sampling Density
Simulation
Type f a h Realizations
A dense dense dense 150
B dense e dense 150
C dense e e 150
D sparse sparse e 300
E sparse sparse dense 300
F e e dense 300
G sparse 300
H sparse dense 300
Conditional
Simulation
Type Description Realizations
I (as H) g} = 1.8; 300
oé = 0.24;
(log @) = 0.6
J (as H) g} =12 300
oé = 0.16;
(log @) = —0.6
K (as H) g = 1.8; 300
- = 0.24;
F =05
L (as H) H=-14m 300

Conditional simulations A through H are based on different sam-
pling networks for the parameters f, a, and /. Simulations I through
L are applied to field site 28 to assess the effect of erroneous statistical
input parameters.

stream lines obtained from simulations A and G are depicted
in Figures 3b and 3c, respectively. The main features of the
flow regime at this site, as discussed above, are well predicted
by these two conditional simulations. A comparison of the
results shows that with decreasing number of conditioning
data, conditional mean soil water tension predictions are more
uniform, while the variance increases (Figures 3d and 3e).
Nevertheless, the overall flow regimes in the center of the two
simulation domains are quite similar, manifesting the value of

[em?
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Figure 3. (a) Actual distribution of /2 and streamlines at field
site 28. Mean head and flow lines resulting from mean flux for
conditional simulation (b) A and (c) G. The corresponding
conditional head variances are shown in Figures 3d and 3e.
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Figure 4. Actual pressure head profile (solid lines) for a ver-
tical cross section at the horizontal location of the middle
“borehole” of simulation G (next to the source area; see Fig-
ure 2a). Circles represent the measured data used for condi-
tioning in simulation G. The resulting conditional head profile
is 2shown in dashed lines. Site 28 has oyz = 1.8, while site 12 has
g, = 0.5.

soil water tension information in the conditional simulation of
flow in unsaturated zones.

Note that head variance does not vanish at locations of soil
water tension measurements, although head values at those
locations are perfectly known. This is an artifact of the linear-
ized conditioning procedure [Kitanidis and Vomvoris, 1983;
Peck et al., 1988; Yeh et al., 1993; Gutjahr et al., 1994]. Condi-
tional realizations f¢ and a¢ are obtained from head data
(among others) through linear estimation (4), while condi-
tional realizations of 4¢ are computed by solving the nonlinear
flow equation.

Although field data of soil water tension are not preserved
exactly, the conditional simulation technique generally gives
satisfactory results. For example, in conditional simulation A
of field site 28, head variance in most locations with tensiom-
eter data is reduced to less than 0.015 m? (Figure 3d) from 0.49
m? in the unconditional simulation [Harter, 1994]. In condi-
tional simulation G of field site 28, the minimum variance is
slightly less than 0.03 m? (Figure 3¢). Head conditioning is the
least accurate in areas with steep head gradients, for example,
in the center of the simulation domain between the very wet
and very dry areas mentioned above (illustrated in the cross
section of Figure 4a). In simulations of field sites with moder-
ate o, (o, < 1), differences between measured and mean
conditional head decrease to almost negligible values (Figure 4b).

5. Impacts of Sampling Network Design
on Concentration Prediction

5.1. Field Site Plume Movement
Corresponding plume dynamics at site 28 are depicted in
Figures 5a-5d for dimensionless times ¢’ = 4, 8, 16, and 31.

Initially, the plume moves diagonally downward along the pre-
viously mentioned flow channel (Figure 3a). The tip of the
plume splits into two at or before ' = 8 and spreads hori-
zontally as it reaches a large wet area located above a relatively
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dry lens in the center of the simulation domain (see previous
section). At about#’ = 31 the center of the plume has traveled
beyond the bottom of the simulation domain, and residual
concentration is found primarily within and underneath the
dry, low-permeability area. The plume shape is distinctly non-
Gaussian, with no tendency toward a more Gaussian behavior
even at late times. The following analysis will concentrate on
the conditional simulation results at time ¢’ = 16, when lateral
plume spreading is relatively large. Conditional moments of
plume spreading and breakthrough curves are often found to
be ambiguous due to their integral character [Harter, 1994].
The analysis therefore focuses on mean concentration, {c(x)),
and concentration coefficient of variation, CV_.(x). Together
these two empirical functions best reflect the conditioning effects.

5.2. Sampling Soil Water Tension Only (Simulations
G and F)

Sparse sampling network G provides the least information
for conditional simulation. Nevertheless, 53 tensiometer data
produce a significant improvement in mean concentration pre-
diction (Figure 6c) compared to the unconditional mean con-
centration prediction (Figure 6a). Peak concentrations are sig-
nificantly higher than in the unconditional simulation.
Estimates of both plume front and plume tail are more realistic
than in the unconditional simulation, albeit far from accurate.

If the number of tensiometers is doubled in the vertical and
horizontal directions and extended over a larger cross section
(conditional simulation F, Figure 6€), mean concentration pre-
dictions improve slightly, indicating that the amount of uncer-
tainty reduction per additional soil water tension measurement
point is not proportional to the number of measurements. The
higher the sampling grid density, the smaller is the conditional
effect of additional data within the sampling grid. Note that
perfect knowledge of soil water tension at the source has little
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ferent dimensionless times, ¢'.
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impact on predicting the later behavior of the plume when
compared to simulation G.

Figures 7c and 7e show the distribution of the concentration
coefficient of variation CV, associated with simulations G and
F. Contour line, CV, = 2, is similar in shape to that of the
mean concentration plume, with almost equal extent in the
horizontal direction, but vertically it is narrower than the mean

g unconditional - | conditional D - .
= min.: 1,29
o min.: 1.24
q ‘ _ %
(a) (b)
Sl conditional & conditional C ~
E !
(=
or b
(© (& min.: 0.91
& conditional F - conditional A
g !
™ min.: 0.75
ol ey
b=l
LY
(e) i min.: 0.50
e _ 0 500 1000 1500 2000 [cm]
o -
g conditional B concentration:
T min.: 0.55 coefficient of variation
g [
LY

@ 0.5 0.8 1.1 1.4 1.7 2.0
500 7000 1500 2000 [cm]

Figure 7. (Figure 7a) Unconditional and (Figures 7b-7g)
conditional concentration coefficient of variation for field site
28 at dimensionless time ¢’ = 16. Also indicated are the
minimum values of the concentration coefficient of variation
and its location at/near the center of the plume. Letters refer
to the type of conditional simulation (see Table 2).

1603

-
(S

-
(=]

o
[

minimum CV,_
o o
& [}

T T

|||

1 1

<
N
T
'

0.0~ 70 15 20 25 30

dimensionless time t’

Figure 8. Dynamical behavior of the conditional minimum
concentration coefficient of variation for various conditional
simulations of site 28 (see Table 2).

plume. The size of the mean plume is arbitrarily defined by the
(c(2))/¢ max(t) = 0.01 contour line, where c . (?) is the max-
imum concentration of the actual plume at time ¢. Differences
in the shape of the mean plume and the CV, plume can be
explained by considering the directional effects of condition-
ing. Head correlation scale is larger in the horizontal direction
than in the vertical direction. Also, relative horizontal sampling
density (sampling points per correlation scale of f) is higher
than relative vertical sampling density. Conditioning therefore
reduces flow and concentration uncertainty more in the hori-
zontal direction than in the vertical direction. Note that the
area of low uncertainty outlined by contour line CV, = 2
increases with increasing mean plume size and time.

Minimum CV, locations coincide approximately with loca-
tions of peak mean concentration. At ¢t = 4, the minimum
CV. of simulations F and G are 0.50 and 0.65, respectively,
compared to 0.95 in the unconditional simulation. At¢' = 20,
minimum CV_ generally increases with time, but the ratios
between minimum CV_’s of the two simulations are almost
constant (Figure 8), underscoring conclusions drawn from ob-
servations of mean concentration.

By calculating the variance of the mass balance versus time
function, the numerical mass balance error is found to contrib-
ute approximately 0.1 to the CV/,. Initially, the numerical mass
balance error, CVy,(t) = stdy,(?)/mass,, (standard devia-
tion of the total mass balance in the domain divided by the
total initial mass) is 0, rapidly increases at early time and
reaches a peak of 0.1. Mass balance errors are inherent to the
MMOC and must be attributed to heterogeneous velocity
fields, for which fourth-order Runge-Kutta travel path integra-
tion is known to be inaccurate [see Yeh et al., 1993]. Similar
mass balance errors are found in all MCSs of site 28.

5.3. Sampling Saturated Hydraulic Conductivity Only
(Simulation C)

The variance of a at field site 28 is moderate, and the soil is
relatively wet. Observed spatial variability in unsaturated hy-
draulic conductivities is therefore much like that of saturated
hydraulic conductivities. Particularly, the random spatial pat-
terns of y should be similar to those of f. Consequently, if f is
sampled only on the sparse network (not shown), results are
almost identical to those shown in Figure 6b for conditional
simulation D, with f and a data on the sparse network. This
implies that at site 28, f data by themselves should be helpful
in discriminating the most probable fast flow paths from likely
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slow flow areas. Compared with simulation C (Figure 6d, dense
sampling network for f), conditional solute plume D is con-
siderably more disperse, particularly at later times. Although
the minimum CV_ of 0.88 at ¢' = 4 shows an increase of less
than 10% over simulation C, CV_. = 1.29 at¢' = 16 gives a
30% increase over simulation C (Figure 8). These values ap-
proach those for the unconditional simulation, even exceed
them at ¢t" = 16. Away from the plume center, however, CV,
in conditional simulation D is always less than in the uncon-
ditional simulation.

Most interestingly, the minimum CV/, in simulation C (di-
rect conditioning) is significantly higher than in both simula-
tions F and G (indirect conditioning) (Figure 8). In terms of
uncertainty it appears that soil water tension data by them-
selves improve the concentration prediction more than satu-
rated hydraulic conductivity data by themselves. Only at ¢’ =
31 is the minimum CV/, in simulation G higher than in simu-
lation C, while the minimum CV’, in simulation F (dense &
data, indirect conditioning) remains below that in simulation C
(Figure 8). This is in partial contrast to the mean concentration
prediction, which, particularly att" = 16 and ¢’ = 31, visually
appears to be significantly better in simulation C than in either
F or G. Lower minimum CV, in simulations F and G is prob-
ably caused by smaller horizontal spreading of mean concen-
tration plumes, which results in higher peak concentration. It is
therefore difficult to generalize results from these findings. The
results merely point out the possible effects of soil water ten-
sion measurements. These examples suggest that C1/,. (or vari-
ances) as the only measure of uncertainty may yield ambiguous
results.

5.4. Other Sampling Network Combinations for f, a, and i

Figure 6g shows results of conditional simulation E (sparse
network of f and a, dense network of 4 measurements). These
results are again almost identical to those with sparse f data
and a dense 4 measurement network, but without a data (con-
ditional simulation H, not shown). Spatial concentration dis-
tribution is significantly better predicted than in either simu-
lation D (sparse f and a) or F (dense /). The mean plume is
much less dispersed, resulting in higher concentrations at the
center of the plume. The improvement can be seen at ¢’ = 16,
when both the actual and the mean plume exhibit the strongest
horizontal spreading. The CV. contour map corresponding to
this simulation is illustrated in Figure 7g. It has a shape similar
to that of the predicted mean concentration plume. The min-
imum CV, for simulation E at¢' = 4 is 0.43 compared to 0.88
and 0.50 in simulations D and F, respectively (Figure 8).

Simulation E results are better than those obtained from
conditioning on a dense f sampling network (simulation C). On
the other hand, compared with simulation F (4 only), addi-
tional saturated hydraulic conductivity information in simula-
tion E helps outline the extremely high- and extremely low-
permeability areas, since the spatial variability of « is not very
strong. Results of simulation E are very similar to simulation
B, which is based on a dense network for both f and 4 (not
shown). This again points to the fact that not much is gained by
increasing the number of f measurements from 53 to over 300,
if head data are already available for conditioning. Saturated
hydraulic conductivity measurements are more difficult and
more expensive to implement in situ than head measurements.
Thus a combination of in situ 4 and f data, with more &
measurements than f measurements, may be the most econom-
ical approach to design a monitoring or sampling network.
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5.5. “Dense” Sampling Network for All Parameters
(f, a, h): Simulation A

From a practical point of view, the high sampling density for
simulation A (dense network for f, a, and /) cannot be
achieved without partially removing or destroying the actual
site (e.g., the trench site experiment by Wierenga et al. [1989]).
But this type of conditional simulation serves as a benchmark
test to illustrate uncertainty reduction in an optimally sampled
field site.

Owing to high data density, the conditional mean concen-
tration distribution is very similar, albeit not identical, to the
actual concentration distribution (Figure 6f). The conditional
solute plume shows many of the particular distribution pat-
terns of the actual field plume but does not reproduce every
local detail. A perfect match is not expected because condi-
tional mean concentrations are obtained not from concentra-
tion measurements but from field measurements of variables
nonlinearly related to concentration.

The shape of the CV, plume again follows the predicted
plume (Figure 7f). As expected, the CV,. in simulation A is by
far the lowest in all simulations. As in other conditional sim-
ulations, the minimum coefficient of variation in the center of
the CV, plume increases over the simulated time period from
0.35att’ = 4 to 0.56 at¢t' = 31, indicating increased uncer-
tainty near the center of the plume at later time (Figure 8).

6. Unsaturated Hydraulic Conductivity Variance
and the Effect of Conditioning Data

6.1. Comparison of Wet and Dry, Anisotropic Field Sites
Having Equivalent Variability in y

Field site 15 has a much smaller textural variability than field
site 28: The variance of f and a are only 1 and 0.01, respec-
tively, instead of 2.25 and 0.04 at site 28. However, the in-
creased dryness (mean head H = —10.0 m) leads to a strong
increase in the unsaturated hydraulic conductivity and head
unconditional variance, such that these are approximately
comparable (1.5 versus 1.8, and 0.44 versus 0.49 m?, respec-
tively, for sites 15 and 28). Note that in both soils f and a are
known to be uncorrelated.

Figure 9¢ shows the actual plume at field site 15 at time ¢’ =
10. Also shown are the mean concentration results from con-
ditional simulations A, C, and G and from the unconditional
simulation. Agreement between conditional mean plumes A
and G and actual plume is comparable to findings at field site
28. At similar variances of unsaturated hydraulic conductivity
and soil water tension and for identical mean « and correlation
structure, effects of conditioning on a dense set of f, a, and &
data (simulation A) or on A data alone (simulation G) are
similar, regardless of mean soil water tension and variability in
saturated hydraulic conductivity.

At site 15, however, conditioning on f alone (conditional
simulation C, Figure 9c) neither improves mean concentration
predictions nor reduces minimum CV, values as much as in
wet soil 28 when compared to the unconditional simulation
(Figure 9a). Relative to simulation G (sparse /), the mean
concentration in simulation C (dense f) extends more in lon-
gitudinal and transverse direction with more uncertainty about
the actual travel velocity and travel path. Higher uncertainty is
caused by the variability in a, which here is uncorrelated to f,
and therefore reduces the correlation between saturated and
unsaturated hydraulic conductivity as the soil becomes drier. In
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contrast, soil water tension data provide information not so
much on unsaturated hydraulic conductivity but on the gradi-
ent field and hence the approximate travel path of the plume.
Particularly in dry soils, soil water tension data should be
considered an important source of information for more accu-
rate transport predictions.

6.2. Comparison of Mildly Heterogeneous and Strongly
Heterogeneous Soils

Here an example is given of the effect of soil flux variability
on the conditional concentration moment prediction. The con-
centration moments of field sites 12 and 21 are compared with
those at field site 28. Field site 12 is a moderately heteroge-
neous soil with correlated f and a, unsaturated hydraulic con-
ductivity variance o = 0.53, and head variance o}, = 0.19
m? Mean head is H = —1.50 m. Field site 21 is the same as
field site 12, but in a very dry condition (H = —30.0 m),
resulting in o5 = 3.2 and head variance 0.76 m”. In terms of
o, field site 12 ranks lowest and field site 21 highest among
the sites tested. Note that p,, = 1 at these two sites, which
means that f data perfectly predict a at the same location.

The unconditional plume for field site 12 spreads less than
those at other field sites (Figure 10a). Consequently, the un-
conditional simulation itself is a fairly good description of the
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actual plume (at least compared to the conditional simulation
results at field site 28), although ergodicity (zero concentration
variance) is not achieved within the simulated time period,
even for this moderately heterogeneous soil. The most obvious
difference between unconditional mean plume and actual
plume is the rate of displacement. Conditional simulation A
(Figure 10c, high data density) captures the actual rate of
displacement of the field plume as well as its particular shape.
In contrast, conditional simulation G (Figure 10b, sparse head
data only) offers little improvement over the unconditional
simulation. At ¢’ = 20, the minimum CV, in the uncondi-
tional simulation is 0.79, which decreases by less than 25% to
0.63 in conditional simulation G, but by more than 75% to 0.19
in conditional simulation A. Similar observations can be made
at other output times. In soil 12, flow is almost parallel, a
situation which has been conceptualized in many stochastic
unsaturated flow and transport models as the “parallel column
model” [cf. Destouni, 1993]. Therefore uncertainty is reduced
to predicting the rate of solute displacement while the travel
path is well known. Vertical velocity is primarily controlled by
saturated hydraulic conductivity and «; hence such data are
most important in reducing conditional prediction uncertainty.

Head data, which give information on the overall potential
distribution and hence the travel path are even more important
in simulating site 21, with its widely fluctuating flow paths, than
in simulating site 28. Indeed, the characteristic features of the
actual plume are well captured even by conditional simulation
G (compare Figures 11a and 11b). The effect of conditioning
with head data (when compared to unconditional predictions)
is far more important at this site than at any of the other
simulated sites. In contrast, even simulation A of site 21 (Fig-
ure 11c) cannot exactly predict the actual plume (Figure 11d).
At t' = 5 the unconditional minimum CV, is 1.51, which
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improves by over 50% in simulation G to 0.73, and by almost
70% to 0.47 in conditional simulation A.

Note that sites 12 and 21 represent the same type of soil
under different mean soil water tension conditions. Depending
on H, the same amount of on-site field data yields distinctly
different improvements in conditional plume prediction rela-
tive to unconditional stochastic plume predictions. Condition-
ing on tensiometer measurements is particularly useful in soils
with highly heterogeneous flow paths, that is, in soils with a
high degree of textural heterogeneity, in very dry soils, or in
soils with a steep average slope « of the log K(%) function. In
soils with almost exclusively parallel vertical flow, and there-
fore only mildly heterogeneous unsaturated hydraulic conduc-
tivity fields, the same tensiometer measurements have almost
negligible effects. Saturated hydraulic conductivity data and
data defining « are important for reducing uncertainty in soils
with approximately vertical parallel flow but are less useful
(measured in terms of minimum CV/, reduction relative to the
unconditional minimum CV,) in soils with very tortuous flow
paths, that is, very heterogeneous or dry soils.

7. Anisotropy Ratio and the Effect of
Conditioning Data

Statistically isotropic soil site 3 is chosen for comparison
with conditional simulation results of anisotropic soils 12, 15,
and 28. Relative to its horizontal correlation scale, the hori-
zontal plume spreading in site 3 is much larger than in the
anisotropic soil 28, even though o at site 3 is only half of that
at site 28 (Table 1). This is due to increased flow path tortu-
osity as the transverse-oriented anisotropy of the soil de-
creases. With larger flow path tortuosity, in situ head measure-
ments themselves significantly reduce prediction uncertainty
(Figure 12b), as discussed above. Again, simulation A gives the
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best prediction relative to other conditional simulations (Fig-
ure 12c¢). Nevertheless, even in simulation A significant differ-
ences to the actual plume (Figure 12d) exist. Minimum CV,
reduction at ¢’ = 5 is more than 50% from 1.07 to 0.51 in
simulation G, and more than 85% from 1.07 to 0.14 in simu-
lation A.

8. Conditional Simulation Under Parameter
Uncertainty

In all of the previous simulations it is assumed that stochastic
parameters describing first and second moments of input pa-
rameters f and a are known with certainty. In reality, sample
populations are small, and estimated mean and covariance
values are associated with a degree of uncertainty that can be
estimated by, for example, the theoretical sampling error [Har-
ter, 1994]. Parameter uncertainty in a conditional stochastic
framework has been addressed by Smith and Schwartz [1981b],
who implemented a specific type of conditional Monte Carlo
analysis of saturated flow and transport to assess the additional
uncertainty introduced by sample estimation errors.

Here an alternative method is implemented to qualitatively
describe the effects of parameter uncertainty in conditional
simulations of solute transport in unsaturated porous media.
We compare mean concentrations predicted by using true (en-
semble) parameters with those computed with erroneous sta-
tistical parameters that are at the 95% confidence level of the
sample moment distribution of H, F, A, a]%, and o2 [see
Harter, 1994]. In other words, there is only a 5% chance that
parameters obtained from field data differ even more from the
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ensemble parameters than do the erroneous ones chosen for
these examples. As in work by Smith and Schwartz [1981b], the
exercise here will be restricted to parameter uncertainty about
the mean and the variance of a RSF. Functional forms of the
covariance and pdfs of f and a are assumed to be known.

Data for the conditional simulation H of soil site 28 (Figure
13a, sparse f, dense /) are chosen to demonstrate the effect of
unwittingly using erroneous statistical parameters. To compute
the sample estimation error for f and a, one can reasonably
assume independence due to the sampling distance (one cor-
relation scale horizontally and two correlation scales vertical-
ly). Using standard Gaussian statistics [Harter, 1994], the the-
oretical sampling errors are determined to be e, = (.24,
g4 = 0.032, &, , = 0.17, &, , = 0.022. Hence with a 95%
probability, sample mean estimates of f and a are within the
intervals [—0.5, 0.5] and [—0.1, 0.1], respectively (two standard
deviations about the mean). With the same probability, sample
standard deviations of f and a should be within the intervals
[1.2, 1.8] and [0.16, 0.24], respectively. Soil water tension data
are strongly correlated and are available in a dense grid. It is
conservatively assumed that sample moments computed from
the 352 measured head data have a sampling error equivalent
to that of 50 independent head data. The unconditional head
standard deviation, computed from unconditional MCS, is 0.7
m [Harter, 1994]. Then ¢, =~ 0.1 m.

In simulation I (Figure 13b), parameters for the variances of
f and a are overestimated (o, = 1.8; o, = 0.24). The mean
of a is strongly overestimated: Although A can be determined
very accurately under the above assumptions, it is the most
difficult one to estimate in the field, since it is generally derived
from fitting theoretical equations to measurements of unsat-
urated hydraulic conductivity or the soil water retention curve.
In simulation I, mean log « is arbitrarily set to 0.6, simulating
a measurement error of half an order of magnitude.

The erroneously large « values cause mean conductivity, and
hence mean vertical flux, to be lower than in simulation H.
Plume movement is therefore slower but along the same path
as in the perfect parameter case. Higher variances in f and a
contribute relatively little to the overall spreading of the mean
concentration. Their erroneous effects are offset by the condi-
tioning effect of the actual field data (which are exactly the
same as in the perfect parameter case). Note that the dimen-
sionless time ¢" = V,t/A,, indicated in the individual panels of
Figure 13, are all based on the same actual ensemble mean
velocity V, obtained from an unconditional MCS with correct
parameters. In Figure 13, plumes are compared at different
times, but at approximately equal displacements from the
source.

If variances are underestimated (o7 = 1.2, o = 0.16) and
the mean of « is found lower than in the ensemble such that
mean of log @« = —0.6 (simulation J, Figure 13c), the plume
moves much faster than the actual plume. Due to smaller «
values, the unconditional mean vertical velocity is 6.8 times
faster than in the previous case I, and almost twice as large as
that at the actual site. Yet the plume moves along a similar
travel path and with only a small decrease in plume spreading.

Figure 13d shows the mean plume prediction from a simu-
lation that again overestimates the variances of f and a but has
the correct A (mean of a) and an overestimate of F, the mean
of f (conditional simulation K). The plume moves only slightly
faster than in the correct parameter case (Figure 13a) and with
only slightly more spreading. Similar results are found if the f
and a parameters are estimated correctly, but the mean soil
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water tension is too wet (conditional simulation L), resulting in
a higher average conductivity (Figure 13e).

These results show that conditioning reduces not only the
uncertainty attributable to spatial heterogeneity but also the
unknown errors arising from a limited knowledge of overall
soil properties. Conditioning data tend to neutralize the pa-
rameter estimation error. With a high amount of tension data
and some conductivity data, mean and variance estimation
becomes a relatively minor source of uncertainty compared to
the uncertainty arising from the spatial variability of the pa-
rameters. Uncertainty in the correlation function needs to be
explored in a future study.

9. Deterministic Geostatistical Inverse
Approach: Comparison

By assuming that all pertinent statistical moments are known
and by setting the unconditional random input fields equal to
their mean, the conditional simulation algorithm of section 2.1
(Figure 1) reduces to the geostatistical inverse modeling ap-
proach described similarly for saturated groundwater flow by
Neuman and Yakowitz [1979] and by Kitanidis and Vomvoris
[1983]. Measurements of f, a, and & are used to estimate the
remaining unknown f and a data in the simulation grid through
the linear, unbiased, cokriging estimator introduced earlier.



1608

Steady state head and solute transport solutions are then com-
puted for the cokriged f and a fields. The geostatistical inverse
modeling technique is only one of several other indirect in-
verse modeling techniques [Schweppe, 1973; Neuman and
Yakowitz, 1979; Carrera and Neuman, 1986; Peck et al., 1988].

The inverse approach (cokriging) is applied to field site 28
with the same data as those used for conditional simulation A
of that site. Since the measured data density is relatively ex-
haustive, f and a parameter estimation is associated with only
small errors. Like any random realization of conditional sim-
ulation A, the concentration distribution predicted from the
geostatistical inverse model is a very good approximation of
the overall plume movement (compare Figures 6h and 6a).
The solute plume predicted by the inverse model is less dis-
persed than the conditional mean solute plume since it is not
an average concentration. It is also less dispersed than the
actual plume, since the underlying parameter fields for f, a,
and & are subject to minimal perturbation given the condi-
tional data. A less tortuous travel path and a mass balance
error in the transport simulation of up to +13% lead to higher
predicted peak concentrations in the inverse model than ob-
served at the field site.

10. Conclusions

Conditioning effects of f data by themselves decrease not
only with increasing heterogeneity but also as soils dry out,
particularly if mean and variability of a are large and if a is not
strongly correlated with f. There the information content of
soil water tension becomes important for two reasons. First,
the spatial distribution of head values carries information
about the head gradient field in the soil and therefore about
the travel path of a solute plume. Second, soil water tension
data help to better estimate the unsaturated hydraulic conduc-
tivity, which controls both travel velocity and travel path.
Hence in soils with highly variable flow fields, conditioning
with head data significantly reduces transport prediction un-
certainty. Our simulations suggest that a sampling or monitor-
ing network with a dense interval for soil water tension mea-
surements and a sparse interval for saturated hydraulic
conductivity significantly reduces prediction uncertainty of
concentration. Even at high sampling densities, substantial un-
certainty remains about actual concentration levels. It was also
found that uncertainty of solute transport predictions arising
from soil heterogeneity is much more significant than uncer-
tainty arising from parameter uncertainty, if simulations are
conditioned.

From a practical point of view the results are both encour-
aging and disappointing. They are encouraging in that they
show that with less computational effort than in the classic
unconditional approach, and with data that are relatively sim-
ple to obtain in situ (soil water tension), uncertainty about
predicted plume movement in space can be reduced, particu-
larly for applications to highly heterogeneous soils. It is en-
couraging also in that conditional mean concentration predic-
tions at the very least pinpoint areas where plume
displacement significantly differs from the typical downward
movement. This information could be used, for example, to
identify locations from which additional data may be taken. If
the unsaturated flow field is very heterogeneous, conditioning
on a few indirect or direct data will greatly improve uncondi-
tional stochastic predictions from MCS or macrodispersion
analysis. However, results are discouraging in that the simula-
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tions have shown how difficult and expensive (in terms of
field-sampling cost) it is to accurately predict solute plume
movement even under idealized conditions.

In this study, several simplifications are made not only to be
able to compare numerical with analytical solutions [Harter and
Yeh, this issue], but also to be able to establish some funda-
mental relationships between monitoring/sampling network
and the heterogeneity of the soil. Future work must address
effects of variable moisture content and transient flow condi-
tions. Measurement errors, parameter estimation errors, par-
ticularly about the correlation structure, and error in assuming
wrong models for describing K(4) and h(6) may further in-
crease prediction uncertainty. Thus it is expected that actual
prediction improvements due to conditioning are smaller than
shown in these hypothetical examples. These issues await fur-
ther research.
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