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The variance in particle position, a measure of dispersion, is reviewed in the context of certain models 
of flow in random porous media. Asymptotic results for a highly stratified medium and an isotropic 
medium are particularly highlighted. Results of the natural gradient tracer test at the Borden site are 
reviewed in light of these models. This review suggests that the moments obtained for the conservative 
tracers at the Borden site could as well be explained by a model that more explicitly represents the 
three-dimensional nature of the flow field. 

INTRODUCTION 

In this note we wish to discuss certain aspects of a natural 
gradient tracer test recently performed at the Borden site, On- 
tario, Canada. The results of the test, as well as the reduced 
data, have been reported on in a series of articles by Mackay 
et al. [1986], Freyberg [1986], Roberts et al. [1986], and Su- 
dicky [1986]. In this test, two conservative (as well as other) 
tracers were injected into a rather uniform sand aquifer over a 
1.6-m depth in a simulated pulse consisting of 12 m 3 of solu- 
tion. The resulting tracer cloud was then allowed to drift with 
the natural gradient while being observed through multilevel 
samplers, consisting of collection tubes set to various depths, 
which were arranged in a regular grid along the flow path. 
Concentrations, measured from samples taken from these 
tubes, were depth integrated and this reduced data set was 
used to estimate horizontal moments of the tracer cloud. Our 

note concerns the time modeling of the second moment, or 
variance, of this cloud. Particulars concerning the test are to 
be found in the aforementioned reports. 

The objective of the large-scale field tests is, in no small 
part, to test recently advanced theories of dispersion in hetero- 
geneous porous media. These theories in general require a 
knowledge of two medium parameters: the variance in the 
logarithm of hydraulic conductivity and the correlation length 
scale of this quantity. The investigators at the Borden site, in a 
laudable effort culminating from intensive sampling of the 
medium, provide us with estimators of these parameters. The 
concentration variance model used by these investigators for a 
conservative tracer, however, does not admit three- 
dimensional flow [-see Freyberg, 1986, equation (12); Sudicky, 
1986, equation (14)]. We propose a model that does admit 
three-dimensional flow and that also allows for a highly strati- 
fied medium. 

In order to make our note more lucid, we first derive certain 
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theoretical results concerning the time behavior of the second 
moment of a tagged particulate of water moving through a 
medium in which the hydraulic conductivity is spatially vari- 
able but statistically homogeneous. Many of these results have 
been reported on previously by Dagan [1984]; we expand 
slightly on his earlier results and particularize them to dis- 
cussing the natural gradient tracer test. Subsequently, we dis- 
cuss the estimated second moments from the Borden tracer 
test and their relation to these theoretical models. 

THEORETICAL CONSIDERATIONS 

The vectoral position Z(t) of a fluid particulate moving 
through a three-dimensional medium is accurately described 
by the model 

Z(t) = •• U(Z(t))dt + z(O) (1) 

where U(x), x = (x•, x 2, x 3) is the Eulerian velocity field [Phy- 
thian, 1975]. Since this form is rather intractable, a first-order 
approximation of the particle path is commonly used in the 
integrand of (1)' that is, X(t) • Ot, where • = E(U) is assumed 
constant. Thus (1) becomes 

Z(t) = f• U(•Jt) dt (2) 
where we have neglected Z(0) without loss of generality. In 
addition, if a coordinate axis is chosen such that U = (U•, 0, 
0), then (2) can be written 

Z(t) = (1/U•) U(z, O, O) dz (3) 

We will then be concerned principally with the component of 
Z(t) that lies in the E(U) direction, which is Z•(t) in the case of 
(3). The variance of this component, where U(x) is a second- 
order stationary random field, is 

- 2) fo e't Var [Z•] =(2/U• (U•t--s•) Covut (s • , O, O) ds • (4) 
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where COVu, (s) is the covariance function of the u• = U• 
-U• component of the velocity field (see, for example, 
Taylor [ 1921 ]). Equation (4) is unchanged in form for the case 
of two-dimensional flow' the velocity covariance function 
need only represent a two-dimensional process, while U• 
should be the appropriate mean velocity for this case. 

With this initial information, it is well to consider first an 
overly simple model. Assume that flow is present in a perfectly 
stratified aquifer and that the mean flow is parallel to stratifi- 
cation. Then (3), where •: = (Z•, 0, 0), is exact and the mean 
and variance in particle position are 

E(Z•) = U•t = KJt/n (5a) 

Var [Zl] = t2 Var [U1] = asz2j2t2/r12 (5b) 

respectively, where J is the gradient of the flow system,/• and 
rrs: 2 are the mean and variance of the hydraulic conductivity 
fields, and n is the mean porosity. The result follows because 
K, in case (5), is a function of x 3 only. In reality, (5b) repre- 
sents the early time behavior of almost all three-dimensional 
transport problems because most media exhibit some degree 
of stratification. 

Dagan [1987] has proposed a significant variant of the per- 
fectly stratified model. He considers a model in which the 
hydraulic conductivity within each layer is variable but as- 
sumes that no single layer can communicate with its neigh- 
bors. The interlayer variability is taken to be two dimensional, 
parallel to bedding. That is, hydraulic conductivity is a 
random function of space only in the plane perpendicular to 
the direction of stratification. In this case, the ensemble mean 
particle position becomes 

E(Z,) = Ugt = KgJt/n (6) 

where Ua and Ka are the geometric means of velocity and 
hydraulic conductivity, respectively, and J now represents the 
mean gradient. Taking U• = Ua in (4), then, the variance in 
particle position becomes 

Var [Z•] = 0'¾2•2A•('r) (6') 
where ar 2 is the variance in the logarithm of the hydraulic 
conductivity, Y - In K, 2 is the horizontal length scale of the 
medium approximately equivalent to the horizontal dimen- 

sion of a heterogeneity, and r - Ugt/2. The dimensionless vari- 
ance A,(r) is dependent upon the particular covariance func- 
tion chosen to represent the correlation structure of the two- 
dimensional hydraulic conductivity field. In the case where an 
isotropic negative exponential is used to represent this behav- 
ior, Dagan [1984, 1987] found that 

A,(r) = •[2r + 311/2-- C + (e-*(r + 1)-- 1)/r2--El(r)-- In 

(7) 

where C is Euler's number and E•(r) is a first-order ex- 
ponential integral. The constant • results from deriving the 
two-dimensional hydraulic conductivity field necessary to (4) 
by averaging a three-dimensional process over one vertical 
length scale. The intent of fl is to compensate for the use of a 
two-dimensional correlation function when the hydraulic con- 
ductivity field is technically a three-dimensional process. 
Again, for the specific covariance function selected by Dagan 
[1987], fl = 0.74. With these inputs, (6') will have early and 
late time behavior 

Var [•1] "• 3/8flø'r2Ua 2t2 t--• 0 (8a) 

Var [Z1] •" 2flar22U• t t-• oo (8b) 

respectively. Note that the intent of (6) is to approximate dis- 
persion in three-dimensional media that is so highly stratified 
that the intralayer correlation in flow is insignificant. 

In order to contrast the above two-dimensional approxi- 
mator with an actual three-dimensional case, we derive the 
variance in particle position for two cases where flow is three 
dimensional. We assume that the logarithm of hydraulic con- 
ductivity, Y- In K, has a negative exponential correlation 
structure such that its spectrum can be expressed as 

Sr(k ) = aY2'•'2'•'3 2 2) 2)-2 •r •(1 + ;.2(k• + k 2 +,•32k3 (9) 
where k i is the wave number in the i direction and ;. or •3 are 
the corresponding length scales. Then, from Gelhar and Axness 
[1983, equation (61)] the spectrum of the velocity field in the 
U• direction can be expressed as 

Su,(k) -- (KaJ/rl)2((k22 q- k32)/k2)2S¾(k) (10) 

where k 2 -- k ß k, and it has been assumed that x• is parallel 
to k•, such that stratification, if present, is parallel to the mean 
flow direction. Noting that U a -KaJ/n , then the covariance 
function of the u• process becomes 

COVu,(S) = Ua 2 •eik's((k22 + k32)/k2)2Sr(k) dk (11) 
which, upon substitution into (4) gives the result that 

Var [7.•] = ? (1 -- eik•u•t)/(k•2)((k22 + k32)/k2)2Sr(k ) dk 
(12) 

where 7= U•/Ua. Letting z = (ik•, •k2, ,•3k3) then (12) takes 
the form 

Var [Z•] = 220'¾2A('r)/72 (13a) 

where 

- .% ._+. 
Zi 2 Zi 2 q- Z22 q- ]/2Z32 (1 

dz 

22) 2 

(13b) 

and r = U•t/2, tt = 2/2 3. In general, (13b) is rather difficult to 
resolve. However, two asymptotes of interest can be obtained, 
one by assuming tt to be very large, i.e., the stratified case, and 
the other by letting/•t = 1, i.e., the isotropic case. We examine 
the stratified case first. 

Allowing # to be large in (13b) results in the approximation 
that A(r)-• A•(r), where 

2 • 1--Cos (z•r) dz •] (14) •,(r) • z, (1 + ß --- 2 Z2)2 = 2It -- 1 + e- 
On the other hand, when tt = 1 in (13b) then A(•:)--} 
where 

1 -- COS (Z lr) Z 2 q- Z3 2 dz 
• z 2 (1 + 

= As(z ) + B(z) (15a) 

_ 8_ B(r)=--2{•+ [•85 4 (r_• + •_• (150) 
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Fig. 1. Dimensionless variance in particle position' Ag(O, equation 
(7)' As(z ), equation (14)' and Ai(z ), equation (15). 

It can be verified that this solution is identical to that of 

Dagan [1984]. The mean velocity U• for the stratified case 
should approach the arithmetic mean; i.e., 

• = K 0 exp (ar2/2)J/n 

while that for the isotropic case is 

• = K0 exp (ar2/6)J/n 

(16) 

(16') 

[Gelhar and Axness, 1983, equation (60)]. Thus one would 
expect the mean velocity to be somewhat greater than the 
geometric mean for these three-dimensional models. We note 
that the early and late time variance asymptotes for the strati- 
fied model are 

t--•O (17a) 

t-• c• (17b) 

Var [X•] = •7¾2U•2t 2 

Var [Z•] = 2•r2}.[7•t/Y 2 

while for the isotropic model these asymptotes are 

t•O (18a) 

t • c• (18b) 

Var [Z•] = l•7y2Ua 2t2 

Var [X•] = 2•r2}.[7•t/y 2 

[Daoan, 1984]. Result (17b) is equivalent to (65a) of Gelhat and 
Axness [1983], while result (18b) is equivalent to their (33); 
these results are equal when mean flow is parallel to stratifi- 
cation as in the case of (17b). It is important to note that all 
three models (equations (8a), (17a), and (18a)) indicate an early 
time behavior proportional to t 2. However, the stratified case 
(17a) will respond the most rapidly, while the two-dimensional 
approximator (8a) will respond least rapidly. Note that when 
K is lognormally distributed, (17a) is a first-order approxi- 
mation of (5b). The large time behavior of the two- 
dimensional approximator (8b) differs from these by a factor 
of f17. Dimensionless curves for the three cases are presented in 
Figure 1; note that z is a different dimensionless parameter in 
the case of the two-dimensional approximator (7) as compared 
to the three-dimensional case (13). 

It should be noted that all these results assume a certain 

ergodicity in order that the ensemble averages reported above 
can be applied to a real-world situation. In the case of the 
stratified models (5) and (6), the ergodie state can be achieved 

by averaging over many layers in the vertical direction, con- 
sidering that flow, in these cases, is parallel to stratification. In 
the case of (13) it is less obvious that an ergodie state can be 
achieved by this means, especially if g = 1 and • is large rela- 
tive to the injection zone. However, in the situation at hand, 
•'3 is small relative to the zone of injection so that although 
the spatial concentration information is correlated, it should 
yield averages which approximate the ensemble moments. 
Indeed, the smoothing seen in the depth-averaged con- 
centrations, versus the three-dimensional data set [Mackay et 
a!., 1986], is indicative that ergodicity is a functional hypoth- 
esis in this case. 

INTERPRETATION 

Freybero [1986] and Sudicky [1986] collected and present- 
ed a considerable amount of information concerning the 
variability of the medium and flow field. From these data, the 
following parameter values are indicated' 

0'1, 2 = 0.29 

U• = 0.091 m/day 

y- 1.16 

,• = 2.8 m 

U• = K•d/n = 0.078 m/day 

Note that as discussed by Sudicky [1986], U• calculated from 
(16a) using the above values of ar 2 and U0 is very close to the 
field value reported above. If these values are incorporated 
into (7), (14), and (15), then curves g, s, and i, respectively, of 
Figure 2 result. If, in addition, the moment data from Frey- 
bero [1986, Table 3] are plotted on the same graph, then it 
would appear that the two-dimensional approximator (7) fits 
the field data most closely; indeed, the fit is remarkable. (We 
have used all field moment values, even though there is some 
question as to the validity of the oldest bromide moment' see 
Freyberg [1986].) Differences between this fit and that of Su- 
dicky are primarily the result of using a geometric mean veloc- 
ity in (7). 
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Fig. 2. Variance curves as calibrated with field data from Borden 

site. Point variance estimates from tracer results at Borden site [Frey- 
berg, 1986]. 
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100 

Fig. 3. Best fit of point variance estimates to three-dimensional flow 
models: 2 = 2.1 m. 

The best fit derived from Figure 2 is all the more remark- 
able considering the physical basis of the underlying model (7). 
No vertical flow component is permitted with this model, yet 
there is an abundance of data to indicate that a vertical com- 

ponent should be present. $udicky [1986] reports a horizontal 
to vertical anisotropy in hydraulic conductivity of 1.3, which is 
exceedingly small (see, for example, Weeks [1969]). The 
plume, as an apparent result of a density contrast [Sudicky, 
1986, p. 2702], sank readily in the initial part of the test, 
indicating that layers do communicate. Indeed, the plots by 
Sudicky [1986, Figures 6 and 7] of the hydraulic conductivity 
field indicate a less than perfect stratification. Finally, the 
good fit of the field data to (16) indicates that while the 
medium is stratified, flow is three dimensional. However, theo- 
retically all second-moment data for a three-dimensional flow 
field should fall between curves s and i on Figure 2, disallow- 
ing for noise. The depth-integrated data from Freyberg [1986] 
clearly do not fall in this range, when the field data are taken 
at face value. 

Examination of Figure 2 indicates that the good fit associ- 
ated with the two-dimensional approximator is largely the 
result of two effects. The ultimate slope of the approximator is 
significantly less than that of the three-dimensional models, 
and the early time behavior is more subdued. Given the good 
relationship between field measurement of U• and Kg and O'r 2, 
the estimated values of these parameters appear very reliable. 
We consider it more likely that the field estimate of ,• could be 
in error' indeed, a maximum likelihood approach as suggested 
by Vecchia [1988] should yield superior estimates of this pa- 
rameter. Alternate 2 values could decrease the ultimate slope 
of the three-dimensional models, as suggested by (17b) and 
(18b). The subdued nature of the initial moment data, as pre- 
sented by Freyberg [1986] in Table 3, could be related to 
problems associated with simulating, in the field, a hypotheti- 
cal pulse injection of tracer. 

As originally injected, the tracer preferentially displaced the 
ambient fluid in the vicinity of the well bores where the 
medium was more permeable. With regard to the depth- 
integrated concentration data, this displacement caused the 
tracer to immediately appear "dispersed" in the medium. 
However, this dispersal is contrary to what one would expect 

from a nonintrusive pulse of tracer in a natural gradient test. 
That is, the tracer, in this real-world test, was actually pushed 
upgradient by the forced injection of the tracer solution. That 
part of the tracer in the more permeable part of the medium 
would be more easily flushed by the natural flow, causing the 
upgradient part of the cloud to be reunited with the main 
body of the cloud. During this period, little apparent ad- 
ditional dispersion would occur. 

In addition to the above possibility, it is probable that a 
density contrast between the injected tracer and the ambient 
water caused the centroid of the tracer cloud to move down- 

ward, perpendicular to the direction of stratification. This 
downward movement occurred at a velocity equivalent to 
40% of the mean horizontal velocity in days 1 through 9, 15% 
in days 11 through 29, and at a rate of about 10% or less 
thereafter (as calculated from Freyberg [1986, Table 3]). This 
additional component of velocity perpendicular to stratifi- 
cation has the effect of reducing dispersion in the direction of 
stratification [-Matheron and deMarsily, 1980]. However, since 
stratification is approximately horizontal, second-moment es- 
timates derived from depth-integrated concentration measure- 
ments should reflect this component of dispersion. Thus one 
would expect that particularly during the initial period of the 
tracer test, moment estimates would be smaller because of this 

additional velocity component. Whatever the reason, we note 
that the variance in the tracer cloud is little changed over the 
first 29 days of the test [Freyberg, 1986, Table 3]. 

Given these two lines of reasoning, then, we consider it 
appropriate to investigate the sorts of length scales and, if 
necessary, time compensation needed in order to make the 
moment data fit the three-dimensional models. This was ac- 

complished by first multiplying the variance estimates from 
Table 3 of Freyberg [1986] by 72/•2rrr 2 and their correspond- 
ing times by U•/2, causing both qualities to take on a nondi- 
mensional character appropriate for plotting on Figure 1. Ac- 
tually, the nondimensionalized data were plotted separately 
but on graphs with the same scaling as Figure 1, and ;. was 
allowed to take on different values from plot to plot (at 2 and 
7 were held constant at their field values). Attempts were then 
made to fit the various plots to the large time part of the 
curves representing the three-dimensional process in Figure 1 
(curves s and i), regardless of the placement of the early time 
data. In this manner, we were able to find two values of 2 that 
in our consideration, give an adequate fit to the three- 
dimensional models. These fits are shown in Figures 3 and 4 
for values of 2 equal to 2.1 and 2.0 m, respectively. For a 2 of 
2.1 m a time compensation in the initial part of the data 
approximately equal to one dimensionless time unit z (or a t 
of 23 days) was required to allow an adequate fit to the late 
time slope, while no time compensation was required for a ;. of 
2.0 m. Although, given the noise in the data, both models are 
probably equally realizable, we prefer Figure 3 as being sightly 
more aesthetic. Note that as a curve-fitting procedure, neither 
figure offers any advantage over the fit in Figure 2' indeed, if 
anything they may be somewhat inferior. 

CONCLUSION AND DISCUSSION 

In our view, the results of the previous section place the 
investigator in a bit of a quandary. On the one hand, the 
original Borden site studies, with model (7) as a basis for 
fitting field moments, allows only for two-dimensional flow. 
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Fi•. 4. Bc•t •t o• poim variance c•timatcs to three-dimensional flow 
models' 2 = 2.0 m. 

On the other hand, model (13b), which allows for three- 
dimensional flow, does not supply a superior fit to the con- 
centration moments, especially when the original field statis- 
tics for media and velocity properties are considered. Thus the 
investigator has a choice of selecting what is probably an 
inferior model with an apparent superior fit, or what is prob- 
ably a superior model with an apparent inferior fit. We have 
demonstrated that a relatively small change (25%) in one of 
the parameters (2) will cause (13b) to have an adequate fit. In 
addition, we have discussed possible early time inconsistencies 
in modeling a field pulse input, which could cause discrep- 
ancies in fitting a theoretical model to field moments. Finally, 
we have presented evidence that points to a three-dimensional 
flow field. Thus while we cannot conclude that (13b) is su- 
perior to (7), we certainly do not feel that the fit demonstrated 
in Figure 2 makes (7) superior to (13b). We suggest that (13b) 
should have been the superior model and puzzle over its lack 
of fit to the field moments. 

This note does point up the need for enhanced methods of 
determining the statistical properties of the medium. To even 
the casual observer, the work necessary to produce the vario- 
gram estimates provided by Sudicky [1986] must have been 
tremendous. Yet, we are neglecting data that reflect the varia- 
bility in hydraulic conductivity because we lack adequate pro- 
cedures to turn this information into statistical estimates of 

medium properties. These data are the variations in con- 
centration and hydraulic head that are available from the 
multilevel collection tubes at these sites. Inverse procedures, 
along the lines of Hoeksema and Kitanidis [i985], are needed 
to turn these variations into independent estimates of medium 
properties. The production of these procedures will not be an 
easy task because of the time-dependent nature of this data, 
which results in an immense quantity of temporal and spatial 
information. This is not to detract from the work of the inves- 

tigators at the Borden site; we firmly believe that this kind of 
experimentation is necessary if the hydrologist is ever to un- 
derstand dispersion in porous media. 

It is interesting to note that if one were to derive a longi- 
tudinal dispersivity crt. for the stratified model (14), then it 
would appear [Fisher, 1966] 

•/. = O. r2j.7 - 2(1 -- e -u) 

where r = t U•/;.. This form has been proposed, on an ad hoc 
basis, by Piekens and Grisak [1981, equation (11)] as a means 
for modeling scale-dependent dispersion. Indeed, given the 
little difference between forms (14) and (15), and the fact that 
most sedimentary aquifers are to some degree stratified, this 
form may find considerable application in this area. 
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