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This work presents a rigorous numerical validation of analytical stochastic models of
steady state unsaturated flow in heterogeneous porous media. It also provides a crucial
link between stochastic theory based on simplifying assumptions and empirical field
and simulation evidence of variably saturated flow in actual or realistic hypothetical
heterogeneous porous media. Statistical properties of unsaturated hydraulic con-
ductivity, soil water tension, and soil water flux in heterogeneous soils are investigated
through high resolution Monte Carlo simulations of a wide range of steady state flow
problems in a quasi-unbounded domain. In agreement with assumptions in analytical
stochastic models of unsaturated flow, hydraulic conductivity and soil water tension
are found to be lognormally and normally distributed, respectively. In contrast,
simulations indicate that in moderate to strong variable conductivity fields,
longitudinal flux is highly skewed. Transverse flux distributions are leptokurtic. the
moments of the probability distributions obtained from Monte Carlo simulations are
compared to modified first-order analytical models. Under moderate to strong
heterogeneous soil flux conditions (j2

y $ 1), analytical solutions overestimate
variability in soil water tension by up to 40% as soil heterogeneity increases, and
underestimate variability of both flux components by up to a factor 5.
Theoretically predicted model (cross-)covariance agree well with the numerical
sample (cross-)covarianaces. Statistical moments are shown to be consistent with
observed physical characteristics of unsaturated flow in heterogeneous soils.q 1998
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1 INTRODUCTION

Groundwater recharge, irrigation efficiency, runoff, evapo-
transpiration, and transport of contaminants, vapors, and
solutes in the vadose zone are examples of the diverse and
important issues associated with a good understanding of
unsaturated flow processes and their spatial variability.
Spatial variability of soil texture, saturated and unsaturated
hydraulic conductivity, moisture content, and water tension
in the unsaturated zone have been reported over the past two
decades in numerous field studies. These studies found that
the permeability of soils may vary by orders of magnitude

over very short distances (decimeters to meters). Variability
in soil moisture content and soil tension is significant with
coefficients of variation from less than 10% to more than
50%17,18.

To investigate the effect of spatial variability on water
movement in the unsaturated zone several stochastic ana-
lyses of unsaturated flow problems have been conducted in
the past. Using analytical methods, Yeh et al.53–56 and
Mantoglou and Gelhar29–31have found that the anisotropy
of effective unsaturated hydraulic conductivity is moisture
dependent and hysteretic, and that the variability of soil–
water pressure and moisture content increases as soils dry
out. These findings are consistent with observations of
lateral interflow to streams and rivers60, extensive lateral
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migration of contaminants7–9,52 and complex hillslope
hydrological processes33. Similar analytical approaches
have been developed to investigate migration of contami-
nants in the unsaturated zone44,45. While these analyses
have advanced our understanding of the effect of hetero-
geneity and furnished means for estimating effective
parameters and variability of soil water flow, they are
known to be strictly applicable only to soils with low
variability due to first-order approximations and implicit
normality assumptions in the derivation of these analytical
models.

More recently, Monte Carlo simulations of unsaturated
flow have been applied to avoid some of the limitations of
analytical stochastic models. Hopmans et al.26 investigated
soil water tension distribution in a shallow unsaturated zone
with multiple, stochastically separate soil horizons. Yeh56

examined the effective hydraulic conductivity in layered
soils. Soil water flux variability in a one-dimensional flow
domain and the dependence of variability on boundary con-
ditions were the focus of work by U¨ nlü et al.46. Other studies
describe the physical dynamics of soil water flow in indi-
vidual, numerically generated, hypothetical soil profile
examples1,38,41,43. Because of numerical difficulties most
of these studies have been limited to soils with a variance
of the unsaturated hydraulic conductivity up to one
(j2

y # 1,y¼ logK, whereK is unsaturated hydraulic conduc-
tivity, log refers to natural logarithm). In contrast, field
measurements indicate thatj2

y is often as high as 3, some-
times even higher2,6,28,50,37,48.

The purpose of this work is to provide a general, com-
prehensive numerical validation of existing analytical
stochastic models for steady state unsaturated flow under a
realistic range of soil conditions including high spatial
variability, varying degrees of statistical anisotropy, and
both dry and wet soil conditions. We illustrate the relation-
ship between abstract stochastic models and physical obser-
vations of unsaturated flow in heterogeneous soils to
underline the significance of stochastic models in our under-
standing of soil water dynamics. To alleviate the numerical
problems associated with computing soil water flow under
conditions of large variability and to reduce overall compu-
tational requirements, we use a recently developed efficient
numerical approach for the simulation of steady state
unsaturated flow in heterogeneous soils21. Here, the
approach is expanded for the implementation of high
resolution Monte Carlo simulations with a large number
of realizations. The specific objectives of this paper are to
determine and prove the statistical sampling accuracy of the
Monte Carlo simulations, to derive joint probability distri-
butions associated with soil–water pressure head, unsatu-
rated hydraulic conductivity, and soil water flux in deep
unsaturated soils, to compare their means, variances, and
(cross-)correlation functions with those obtained from ana-
lytical models, and to link observations of soil water
dynamics in individual soil profiles with the statistical
results derived here. The study provides important informa-
tion regarding the validity and limitations of simplified

assumptions commonly employed in stochastic analysis of
flow in unsaturated porous media.

2 METHODOLOGY

Steady state flow in two-dimensional porous media under
variably saturated conditions is governed by Richards
equation25:

]

]xi
Ki(h)

](xz þ h)
]xi

� �
¼ 0 i ¼ x,z, (1)

wherexx andxz are the horizontal and vertical coordinates,
respectively.xz is positive upward,h is the matric potential
or pressure head (negative for unsaturated conditions).
Einstein summation is implied. Specific flux in thexi direc-
tion is given by Darcy’s law:

qi ¼ ¹ Ki(h)
](hþ xz)

]xi
: (2)

In this study, the exponential conductivity model first
uggested by Gardner14 is used to describe unsaturated
hydraulic conductivity,K, as a function of matric potential,
h,

K(h) ¼ Ksexp(ah), (3)

wherea is a pore-size distribution parameter,Ks is satu-
rated hydraulic conductivity, assumed to be locally iso-
tropic. In agreement with field studies,Ks and a are
assumed to be random space functions (RSFs) with log-
normal distributions49. The RSFs logKs, log a, log K, h,
andq are expanded to

logKs(x) ¼ f ¼ F(x) þ f 9(x) (4)

loga(x) ¼ a¼ A(x) þ a9(x)

logK(x) ¼ y¼ Y(x) þ y9(x)

h(x) ¼ H(x) þ h0(x)

qi(x) ¼ Qi(x) þ q9i(x),

where F(x), A(x), Y(x), H(x) and Qi(x) are the expected
values of logKs(x), log a (x), log K(x), h(x) and qi(x),
respectively, andf9(x), a9(x), y9(x), h9(x), and q9 i (x) are
zero-mean, second-order stationary perturbations at loca-
tion x. We define the geometric mean ofa by G, where
G ; exp (A).

The numerical flow model, MMOC2, used in this study
and its integration into Monte Carlo simulation is fully
described by Harter22 and Yeh et al.57. The numerical
model is based on the Galerkin finite element technique
using rectangular elements and bilinear shape-functions.
The nonlinearity in the flow problem is solved iteratively
using a Newton–Raphson scheme and an incomplete LU
preconditioned conjugate gradient method. After matric
potentials are found from eqn (1) with state eqn (3),
MMOC2 solves Darcy’s eqn (2) with a Galerkin finite
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element method to guarantee a continuous flux field,q(x),
throughout the domain. A semi-analytical, first-order
spectral solutionhL is used as initial guess of the steady
state solution to reduce the computational cost of solving
Richards eqn (1) numerically. A complete description and
validation of this method is given by Harter and Yeh21.

To simulate gravity drainage in deep soils with a water
table beyond the reach of the simulation domain, and to
account for the unknown boundary conditions at the vertical
boundaries of the simulation domain, random Dirichlet type
boundaries were imposed. Pressure head on all boundaries is
set equal to the linearized first-order perturbation solution,
hL, obtained individually for each realization off and a
priori to the numerical solution. The linear solution,hL, is
derived from spectral analysis and inverse Fourier trans-
form. It assumes that the flow domain is infinite and
stationary. Therefore, the numerical simulations represent
a subdomain of a much larger, heterogeneous soil domain
under gravity drainage whose boundaries are at least several
correlation scales away from the simulated domain. Under
those conditions, mean vertical flux is controlled through
soil texture and average soil water potential, or more speci-
fically, by G, H, and the covariance function off and a.
Random pressure head boundary conditions are consistent
with many field applications because boundary conditions
are rarely known with certainty.

Several Monte Carlo simulations (MCS) of two-
dimensional, vertical soil cross-sections are implemented
to investigate the effect of soil heterogeneity, soil water
tension, anisotropy, and pore-size distribution on the varia-
bility of head and flux. The hydrological characteristics of the
simulated soils are chosen to encompass actual field conditions
such as those observed by Wierenga et al.50,51near Las Cruces,
New Mexico. Exponential covariance functions forf anda are
assumed. The RSFa is either perfectly correlated withf(r ¼ 1)
or independent off(r ¼ 0). These two idealized cases corre-
spond to smallest and largest variability iny, respectively,
for any given variability inf anda. At field sites, correlation
betweenf and a is typically weak, but not negligible50,51.
The correlation scale ofa is arbitrarily chosen to be iden-
tical to that off, lf i, wherei ¼ x, z. All MCS are performed
on a 64 by 64 finite element mesh representing a soil
domain that is 6.4 m deep and between 6.4 and 19.2 m
wide. A spectral random field generator19 (SRFG) is used
to assign the values off anda to each element.

Different soil groups are used in this study. Table 1 gives
a complete list of input parameters for each simulated soil.
The effect of increasing variability in saturated hydraulic
conductivity is investigated for isotropic soils (group A)
and anisotropic soils with anisotropy ratiov ¼ l fx/l fz ¼ 6
(group B). In these examples,a andf are assumed uncorre-
lated, and the mean soil water tension is¹1.5 m (relatively

Table 1. Input parameters for the various hypothetical soil sites:j2
f : variance of f ¼ ln Ks, j2

a: variance of a ¼ loga, r: correlation
coefficient betweenf and a, G: geometric mean of a [m ¹1], Dx: horizontal discretization of finite elements [m], Dz: vertical
discretization of finite elements [m],l fx: horizontal correlation length of f [m], l fz: vertical correlation length of f [m]. Soils A3,
E1 and F2 are identical (isotropic reference soil). Similarly, soils B1, D1 and E3 are identical (anisotropic reference soil). Where no

value is indicated, values are identical to the corresponding value for the isotropic reference soil (top row)

Name j2
f j2

a r G H Dx Dz l fx l fz

Reference soil
0.95 0.01 0 1.0 ¹1.5 0.1 0.1 0.5 0.5

Group A: Isotropic, wet soils with different textural variability
A1 0.01 10¹4

A2 0.11 0.01
A3 0.95 0.01
A4 3.6 0.04

Group B: Anisotropic, wet soils with different textural variability
B1 0.95 0.01 0.3 3.0
B2 2.15 0.04 0.3 3.0
B3 3.6 0.04 0.3 3.0

Group C: Correlated, anisotropic soils with different mean soil water tension
C1 1 ¹1.5 0.3 3.0
C2 1 ¹20.0 0.3 3.0
C3 1 ¹30.0 0.3 3.0
Group D: Uncorrelated, anisotropic soils with different mean soil water tension
D1 ¹1.5 0.3 3.0
D2 ¹10.0 0.3 3.0
Group E: Wet soils with different anisotropy ratios
E1 0.1 0.5
E2 0.15 1.5
E3 0.3 3.0
Group F: Isotropic wet soils with different scaled vertical correlation scaleGl fz

F1 0.025 0.125
F2 0.1 0.5
F3 10.0 ¹1.0
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wet, representative for a soil at field capacity). Effects of
increased dryness is demonstrated for anisotropic soils
with v ¼ 6, and either correlated (group C) or uncorre-
lated f and a parameters (group D). Dependence on ani-
sotropy ratio is shown with a series of soils that
distinguish each other only through the horizontal corre-
lation scale off and a (group E). Finally, the effect of
increasing vertical correlations scale and increasing average
pore-size as characterized byG is demonstrated through
group F of the experiments.

Following Yeh et al.54, a first-order analytical solution
has been developed22. Spectrally derived, analytical solu-
tions for the statistical moments ofy, h, qx andqz as func-
tions of moments off anda are compared with the Monte
Carlo simulation results. A summary of the spectral models
is given in Appendix A.

3 SAMPLING ACCURACY AND STATIONARITY
IN MONTE CARLO SIMULATIONS

3.1 Statistical sampling error of moments

In the MCS, sample mean and variance of the RSFsf, a,
y, h, qx and qz are computed by using standard sum-
mation20. The sample covariance fields and cross-covar-
iance fields covpq (xi,y) around xi, i ¼ 1, 1, …, 9, are
evaluated in a window of half the side-length of the
simulation domain (Fig. 1). From these nine sample
(cross-)covariance fields an average (cross-)covariance

field Cpq(y) is obtained

Cpq(y) ¼ 1=9
∑9

i ¼ 1
covpq(xi ,y): (5)

The window for the covariance and cross-variance fields
around the center pointxc of the simulation domain is
chosen to be the entire simulation domain to provide addi-
tional information on covpq(xc,y) at lag distances up to one-
half of the domain size in each direction.

The main weakness of MCS besides numerical inaccura-
cies is the inherent stochasticity of sample moments. The
fundamental theorem of large numbers only guarantees that
expected values of the sample moments of an RSF g,
,mg., ,varg., and,covgg., converge in a mean square
sense to the ensemble meanmg, variancej2

g, and covariance
Cgg of g. Commonly, the number of realizations necessary
to obtain acceptable results is determined by comparing the
sample moments of the input parameters (e.g. saturated
hydraulic conductivity) with their theoretical, known
moments. Sample moments of output RSFs (e.g. head) are
assumed to be representative of ensemble moments, when
additional realizations do not result in significant changes of
output sample moments4,26,46. Such qualitative criteria are
unsatisfactory, because the number of realizations cannot be
determined a priori, and sample moment variability remains
unknown. Furthermore, such an approach is not robust
against outliers. The use of MCSs for verification of analy-
tical stochastic solutions of porous media flow and transport
processes has, therefore, been critically questioned36. How-
ever, standard statistical theory can be applied to determine
the distribution of sample moments a priori. To prove that
sample moments determined from Monte Carlo simulation
vary according to statistical theory, local sample moment
variability within the simulation domain must be compared
to those from theory.

For large samples (N . 30, whereN is the number of
realizations) sample moments of a sample from a Gaussian
distribution with unknown variance are also Gaussian dis-
tributed. The sampling error (i.e. variance)e2

m of the
normally distributed sample meanmg is20,27

e2
m ¼

j2
g

N
: (6)

j2
g is not known and must be estimated from the sample

variance. The sample variance varg itself has an associated
sampling error. For the square rootsg of varg, the sampling
error (i.e. variance)e2

s is approximated by59

e2
s <

j2
g

2N
: (7)

For the sample variance, varg, simple heuristic considera-
tions lead to the expected sampling error (i.e. standard
deviation)ev given e2

s

ev ¼
(jg þ es)2 ¹ (jg ¹ es)2

2
: (8)

Fig. 1. Location of nine sample points (white dots), for which
sample covariances and cross-covariances are computed at all
lag-distances within a ‘window’ surrounding the sample point.
The window is centered on the sample point as shown here for
sample point 9. Only the window of sample point 5 is the entire
simulation grid, which consists of 64 by 64 elements and 65 by

65 nodes.
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After substituting fores from eqn (7), eqn (8) simplifies to:

ev <
2j2

g������
2N

p : (9)

eqns (6) and (9) are useful to determine the number of
realizations necessary to reduce the sampling error at any
given locationx to below a given threshold. For example,
the number of realizations necessary to reduce the 95%
confidence interval of the sample variance and covariance
(6 2ev) to within 6 10% of the ensemble variance and
covariance isN $ 800. In this study, we useN ¼ 1000. In
addition, advantage is taken of the statistical homogeneity
in the random soil properties. Sample mean and sample
variance at each location are averaged across the stationary
simulation domain.

Proper convergence of the Monte Carlo results is
determined a posteriori by computing the variability of the
local sample moments across the simulation domain,
var(mg) and std(varg) and by calculating the ratios
e92

m ¼ var(mg)=e2
m and e9v ¼ std(varg)=ev. These ratios are

approximately 1 if sample moment variability is in accor-
dance with eqns (6) and (9). The theoretical sample
momentsmg and j2

g to compute eqns (6) and (9) are
unknown and are estimated from the spatially averaged
local sample mean,mg. and sample variance,varg..
Then, the dimensionless sample error of the mean is

e92
m ¼ N

var(mg)
, varg.

(10)

and the dimensionless sample error of the variance is

e9v ¼

������������������������
2Nvar(varg)

p
2 , varg.

: (11)

The following two sections analyze the dimensionless
sample errors of both (local and average local) moments
in the Monte Carlo simulations performed.

3.2 Accuracy of local moments in Monte Carlo
simulations

Unsaturated hydraulic conductivity and pressure head
moments. For unsaturated hydraulic conductivity of all

isotropic soils (group A), dimensionless sample errors of
mean eqn (10) and variance eqn (11) are found to range
from 1.0 to 1.2, indicating that the spatial sample variability
of the MCS is in good agreement with the theoretical varia-
bility eqns (6) and (9) expected for a Gaussian sampling
process, even under highly heterogeneous conditions
(Table 2). At anisotropic soil sites,e92

m of y reduces to
values between 0.7 and 0.9, whilee9v of y increases in
more variable, anisotropic soils to values of up to 1.3.
This is attributed to the decrease in domain size relative to
the horizontal correlation scale ofy. In the anisotropic soils,
the horizontal element size is 0.1l fx yielding a relative
horizontal domain size of 6.4l fx, while isotropic soils are
discretized to 0.2l fx yielding a relative horizontal domain
size 12.8l fx (see Table 1). The larger the relative domain
size, the larger the number of statistically independent
samples, which reduces the sampling error relative to the
expected variabilitiese92

m ande9v in an infinite domain. To
test this hypothesis, simulations of group A and B are
repeated for a soil domain that is four times larger (128
times 128 elements). For such simulation conditions we
find that the dimensionless sample errors of the mean and
variance converge to values between 0.95 and 1.1.

Head sample mean and sample variance errorse92
m ande9v

at isotropic soil sites are between 0.6 and 0.7, and between
1.0 and 1.1, respectively (Table 2). In anisotropic soils,e92

m

of h ranges from as low as 0.22 (Cl,j2
y ¼ 0.53) to 0.46 (e.g.

C3, j2
y ¼ 3.1). Errore9v of h increases to as much as 1.4 in

strongly variable anisotropic soils, meaning that the actual
variance sample error may be as much as 40% larger than
estimated by eqn (10). The relatively low values fore92

m and
high values fore9v are again due to the small domain size
relative to the correlation scale of the head. In the aniso-
tropic soils the domain size is only about 3lhx times 5lhz.
Dimensionless mean and variance sample errors converge
to values between 1.0 and 1.2 in a simulation domain with
128 times 128 elements.

3.3 Darcy velocity moments

Spatial variability of local mean flux is comparable to the
expected sample errors (Table 2). Sample errore92

m is
between 0.8 and 1.2 in isotropic soils and between 0.7 and

Table 2. Dimensionless sampling errors for the sample mean (eqn 10)) and sample variance (eqn 11)) of selected soils

Soil number withj2
y,

anisotropy ratio, wetness
Mean Var. Mean Var. Mean Var. Mean Var.
y y h h qx qx qz qz

Al 0.01/1/wet 1.23 0.99 0.65 0.95 1.10 0.94 1.15 0.98
A2 0.12/1/wet 1.21 0.97 0.62 0.99 1.00 1.07 1.10 1.07
A3 0/86/1/wet 1.21 0.99 0.66 1.09 0.84 1.68 0.97 1.71
A4 3.43/1/wet 1.00 0.97 0.87 1.11 0.83 4.08 0.81 3.87
B1 0.74/6/wet 0.84 0.98 0.23 0.83 0.74 2.38 0.75 1.18
B2 1.76/6/wet 0.84 1.10 0.26 0.98 0.90 5.60 0.74 1.96
B3 3.17/6/wet 0.88 1.19 0.38 1.41 0.98 13.2 0.83 4.25
C1 0.53/6/wet 0.82 0.99 0.23 0.82 0.73 1.97 0.63 1.07
C3 3.12/6/dry 0.67 1.26 0.46 1.20 0.98 – 1.03 –
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1.1 in anisotropic soils. In contrast,e9v, in all but the least
variable soils, is significantly larger than values expected for
Gaussian RSFs. It ranges from 0.9 and 1.1 in mildly hetero-
genous soils A1 and A2 to values over 4 in the most hetero-
geneous soils. Increased simulation domain size decreases
dimensionless variance sample errors, yet they are still
much larger than 1. The deviation from Gaussian behavior
is attributed to the non-Gaussian probability distribution
of the Darcian velocity fields, which is further discussed
in the next two sections. Local sample mean and var-
iance of the Darcian velocity should therefore be considered
to have larger sampling errors than predicted from statistical
theory.

3.4 Accuracy of average sample moments

In the ensuing analysis, a much higher sampling accuracy is
achieved by averaging local sample velocity moments
across the simulation domain. We found that the initial
first-order perturbation solution as random head boundary
adversely affects the results within at most one or two cor-
relation scales,l f, from the boundaries. This is similar to the
spatial nonstationarity effect of constant head or constant
flux boundaries. For the purpose of this study, local sample
means and sample variances are, therefore, averaged only
across the stationary region of each simulation to further
decrease the sampling errors determined above. To deter-
mine the 95% confidence interval of the average sample
mean and average sample variance, we conservatively
assume that there are five statistically independent local
sample moments in each dimension of the simulation
domain, or approximately one per two correlation lengths.
Thus, the sample sizeN < 1000 times 52. Using eqn (9) the
95% confidence interval for the sample variance can be
shown to be approximately62%. Taking into consideration
numerical accuracy, we conclude that for purposes of the
following analysis differences between analytically and

numerically determined first and second moments in
excess of 4% should be considered significant.

4 PHYSICAL OBSERVATIONS OF FLOW IN A
RANDOM SOIL: EXAMPLE

To help interpret the MCS results and to discuss and empha-
size the direct relationship between stochastic analysis and
the physical dynamics of water flow in a heterogeneous soil,
we first demonstrate and discuss typical patterns of the var-
ious RSFs under investigation using a single realization.
The example chosen is an anisotropic soil (soil B3) with a
high degree of spatial variability,j2

y ¼ 3:2. The nonlinear
solution ofy [Fig. 2(a)] in this relatively wet soil is primarily
determined by and, therefore, similar to the saturated
hydraulic conductivity distribution. Note that the spatial
pattern of unsaturated hydraulic conductivity will converge
to that of the saturated hydraulic conductivity as the scaled
mean soil–water tensionGH approaches 0, i.e. the soil
becomes saturated. At a given negative value ofGH
(unsaturated flow), the degree of similarity between unsatu-
rated and saturated hydraulic conductivity depends on the
correlation between the perturbations ofa and f, and the
variability of a. In a soil with negligible correlation between
a and f(r < 0), such as the example shown here, higher
variability in a leads to more variability in unsaturated
hydraulic conductivity and less resemblance to the spatial
distribution of the saturated hydraulic conductivity field. In
the hypothetical case of a soil with perfectly correlateda
and f properties (r ¼ 1), the variability of the unsaturated
hydraulic conductivity can be shown in disappear atGHc ¼

¹1/z [see eqn (16)]. At even lower mean soil water tension,
variability of unsaturated hydraulic conductivity increases
monotonically. The critical pressure,Hc, separates a wetter
unsaturated flow regime that takes place in predominantly
coarse textured portions of the soil domain from a drier

Fig. 2. Example realization of a highly variable anisotropic soil (soil B3): (a) unsaturated hydraulic conductivity; (b) soil water tension; (c)
horizontal Darcian flux; and (d) vertical Darcian flux. Positive flux is vertically upward and horizontally to the right. Notice that largest
absolute values of horizontal flux (white and black areas) occur at or near locations, where vertical flux is also relatively large (white areas).

For reference, each panel shows the same set of streamlines computed from the flux fields in (c) and (d).
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unsaturated flow regime that involves fine textured materials
in a soil.

The pressure head,h [Fig. 2(b)] is significantly smoother
than the random realizations off, a or y. Also, it is more
anisotropic thany with significantly larger spatial continuity
in the horizontal direction than in the vertical direction.
Vertically, abrupt pressure changes occur at the interface
between fine textured soil (indicated by smally) and
coarse textured soil below (indicated by largey). The
pressure head in the fine textured soil is higher (less nega-
tive) than in the coarse textured soil creating a steep vertical
pressure gradient in response to the low hydraulic conduc-
tivity in the fine textured soil. Gradients of head,h, together
with gravity are the driving force of unsaturated flow and,
therefore,h tends to equilibrate horizontally across a scale
larger than the horizontal scale of soil textural hetero-
geneities. Stronger continuity in horizontal direction is
due to the effects of gravity: Differences in soil water pres-
sure in the horizontal direction are equilibrated by the flow
system through adjustment of vertical flux rates at a hori-
zontal scale similar to that of hydraulic conductivity, i.e. a
significantly shorter scale than that of the pressure head. The
correspondingqx and qz fields are shown in Fig. 2(c,d).
Elongated linear patterns, which are positive and negative
diagonal for the transverse component and vertically
braided for the longitudinal component, are distinctly dif-
ferent from the random patterns of logKs, log K, or pressure
head realizations. Horizontal and vertical flux realizations
are complimentary, mutually dependent components of the
flux vector q. We observe that very large horizontal flux
occurs only where vertical flux is also large and where the
overall flux direction is at an angle to the vertical axis.
Locations with a large horizontal flux component connect
non-vertically aligned locations of high vertical flux.
Together, these high flux channels define a continuous net-
work of braided preferential flow parts. In contrast, large
parts of the remaining soil domain contribute relatively little
to moisture flux. Accumulation of moisture flux into narrow
channels increases with soil textural heterogeneity. It also
increases with soil dryness. Both cause an increase in unsa-
turated hydraulic conductivity variance. Similar patterns of
flow channeling were shown by Moreno et al.34 who
modeled saturated Darcy flow in a two-dimensional,
single fracture with varying aperture and high variability
of fracture resistance (which is inversely related to the con-
ductivity). Moreno and Tsang35 demonstrated that channel-
ing effects in saturated three-dimensional porous media are
very pronounced, when hydraulic conductivity variance is
large. Preferential flow has also been observed in field soils,
where channeling due to soil heterogeneity and wetting
front instability (fingering) may greatly enhance the varia-
bility of the flux field16.

The qualitative features of soil hydraulic properties are
consistent with those described in other analyses of soil
water flux dynamics through simulated cross-sections of
hypothetical heterogeneous soils1,38,41,43. In particular, a
good qualitative agreement is obtained between the example

in Fig. 2, which is based on Gardner14 parametrization ofK,
and simulations based on self-similarity and Van Genuch-
ten47 parametrization41. The agreement can be explained by
comparing the nature of the unsaturated hydraulic conduc-
tivity function in that particular example. Within the narrow
range of soil water tension observed in the Van Genuchten
soil41, unsaturated hydraulic conductivity functions are
approximately log-linearly dependent on head. Under
those circumstances, the realizations of self-similar, Van
Genuchten soils corresponds to Gardner soils withf anda
being perfectly correlated. Also note that Roth41 has demon-
strated that the particular choice of covariance function forf
and a has minor impacts on the global structure of the
unsaturated flow field, suggesting that the analysis provided
here has implications that are, at least qualitatively, not
limited to the particular random field or hydraulic models
chosen in this analysis. We will demonstrate next, that
important aspects of soil dynamics qualitatively described
here and in studies such as Roth41 have a well-founded
mathematical-stochastic basis and can to a limited degree
of accuracy be predicted by existing analytical stochastic
models.

5 NUMERICAL STOCHASTIC ANALYSIS AND
VALIDATION OF ANALYTICAL MODEL

5.1 Sample probability distribution function (PDF)

Marginal sample probability distribution functions of the
individual RSFs were sampled from over 300 discrete
histogram classes and are therefore shown as continuous
distributions. Fig. 3 shows a typical example of a soil with
moderate heterogeneity (soil A3). The probability plots of y
and h at all soil sites indicate that these RSFs are Gaussian-
like distributed [e.g. Fig. 3(a,b)]. These findings confirm
assumptions about the distribution ofy andh in the analy-
tical work by Yeh et al.53–55 and Mantaglou et al.29–31.
Deviations from Gaussian distributions, particularly in
soils with large variability ofy, occur at the tails of the
cumulative distributions, particularly those ofh.

Sample distributions for the longitudinal componentqz

are found to be approximately lognormal [Fig. 2(c)].
Formal testing for lognormal distribution by thex2 and
Kolmogorov–Smirnov method20 was negative at the 1%
level due to significant differences between sample distribu-
tions and lognormal distribution near the tail ends, particu-
larly for small qz. By heuristic argument,qz cannot be
lognormally distributed, because zeroqz or even upward
qz are physically possible as demonstrated in Fig. 2(d).
Note that sample distributions similar to those from the
complete RSF sampling set are obtained from the limited
data set obtained at the domain center point only [black dots
in Fig. 3(c)]. The agreement between the exhaustive sample
distribution and the single sample point distribution rules
out that the shape of the sample distribution is due to non-
stationarity within the sample domain. The results are in
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accordance with the longitudinal flux distributions obtained
from Monte Carlo simulations of saturated flow in two- and
three-dimensional heterogeneous media by Bellin et al.4 and
with unsaturated flow results for a two-dimensional, Miller-
similar medium41.

Horizontal flux probability distributions of all soils are
symmetric, but strongly leptokurtic. For the isotropic soil
A3, for example, the kurtosis is 7.25 [Fig. 3(d)]. This
empirically determined form of the transverse flux distri-
bution is at first glance in contrast to the findings of Bellin
et al.4 who reported that the horizontal flux component in
their simulations of strongly heterogeneous saturated porous
media has a normal pdf. However, visual inspection of
Figure 7(d) in Bellin et al.4 indicates that their correspond-
ing transverse velocity pdf qualitatively also tends to be
leptokurtic. The leptokurtic form of the horizontal flux pdf
and the skewed distributions of the vertical flux pdf are
consistent with the observation of preferential flow in the
example presented above. Under heterogeneous flow con-
ditions the magnitude ofqx is most likely small or even zero,
but in the preferential flow areas, which are by definition of
limited spatial extent,qx is likely to be very large in either
positive or negative direction, whileqz is large only in ver-
tically downward direction. Hence the long tail on either
end of the pdf ofqx, but only on one end of the pdf ofqz

giving the latter the impression of a quasi-lognormal

distribution. Because large positive or negative transverse
flux conditions are likely to be associated with large long-
itudinal (vertical) flux conditions, in particular under isotro-
pic conditions, it is not surprising that the pdfs of the two
flux components are not found to be completely indepen-
dent. Note that on the other hand, small transverse flux
values are not strongly correlated with longitudinal flux
values.

These findings have important implications on our under-
standing of solute flux. In contrast to our numerical results,
analytical stochastic transport models13,15 assume that the
two flux components are statistically independent and Gaus-
sian distributed. The correlation between large components
of horizontal and vertical flux, the leptokurtic distribution of
horizontal flux, and the significant lateral variability of high
velocity flow channels explains, why observed transverse
spreading of inert solutes in soil water is significantly
larger than predicted by analytical transport models23.

5.2 Analysis and comparison of first moments (mean)

After empirically determining the general form of the prob-
ability distribution functions fory, h andq, the next stochas-
tic property of interest is the first moment of the probability
density function of each of these RSFs. The set of simula-
tions performed are compared to analytical models relating
the RSF’s mean to variability off anda, j2

f andj2
a, mean soil

water tension prescribed on the boundaries, degree of aniso-
tropy, n, and dimensionless vertical correlation scale off,
Gl fz. These are the soil and infiltration parameters determin-
ing the average soil water tension, unsaturated hydraulic
conductivity, and soil water flux.

The average sample mean of the log unsaturated
hydraulic conductivity,Y, is found proportional toH such
that for all tested soils the analytical approximation ofY, Y¼

F þ HG, holds accurately: deviations are less than 1%. The
deviations of the sample mean head averaged across the
simulation domain from the mean head prescribed for
the first-order head perturbations on the boundary are less
than 0.1% in a relatively homogeneous soil (e.g. soil A1)
and less than 1% even if the head variance is very large.
These small differences indicate that the numerical mass-
balance errors are reasonably small, even for simulations of
highly heterogeneous unsaturated flow conditions.

Due to the mean vertical, uniform flux, the mean hori-
zontal flux should vanish. Indeed all simulations render
average sample mean horizontal flux,Qx, to be at least
three orders of magnitude smaller than the mean vertical
flux, Qz. It is, therefore, considered negligible. The first
order analytical meanQz is

Qz ¼ Km (12)

whereKm ¼ exp (Y) is the geometric mean of the unsatu-
rated hydraulic conductivity. The first-order analysis
assumes that both the vertical and horizontal velocities
have a normal distribution. Although the assumption
does not hold, the difference between analytically and

Fig. 3. Sample probability distributions of (a)h; (b) y ¼ ln K; (c)
qz; and (d) qx from 1000 realizations of the isotropic reference
soil. The solid line represents the total sample (all points in each
realization) of more than 4 million sampling points. The solid
circles represent a sample of 1000 head values taken at sample

point 5 (see Fig. 1).
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numerically obtainedQz in isotropic soils withj2
f # 1 is

insignificant (less than 3%, see Table 2).
In contrast, the simulations show thatKm is a poor esti-

mator of mean vertical flux in moderately to highly hetero-
geneous soils, particularly if the soil is anisotropic. In the
example of a highly heterogeneous isotropic soil (A4), the
simulated sampleQz is 10% larger than computed from eqn
(12). On the other hand, the average sampleQz in the aniso-
tropic, wet soils withj2

f ¼ 1, is more than 20% smaller and
decreases in more heterogeneous systems to less than 50%
of Km. The decrease in the average mean flux relative to the
analytical prediction must be explained by the neglect of
higher order moments in the derivation of eqn (12), which
are significant given the lognormal distribution ofqz and the
preferential flow patterns, particularly in anisotropic soils
with j2

y $ 1. As expected, the numerical results demonstrate
that the average steady state flux in highly heterogeneous
soils strongly depends onj2

y and on the anisotropy ratio.
Because the average gradient in all simulated soil profiles

is unity, the mean average soil water flux is by definition
equal to the effective hydraulic conductivity,Ke, of the soil
transect, whereKe ¼ Qz/,]h/]z.. A mixed higher-order
analysis ofKe was presented by Yeh et al.54 for soils similar
to those presented here, but with normal (instead of log-
normal) distributeda. They demonstrate that, forGl fz , 1,
and flow normal to soil stratification (n .. 1), the effective
hydraulic conductivity is smaller than the geometric mean
hydraulic conductivity. In the limit, asv → ` (perfectly
stratified soil), the effective hydraulic conductivity
approaches the harmonic mean,Kh, of y, where
Kh ¼ Kp

mexp( ¹ j2
y=2). Based on their analysis, the effective

hydraulic conductivity for anisotropic soils withv ¼ 6, for
example, is approximately 80% ofKm for j2

y ¼ 1, and
approximately 50% ofKm for j2

y ¼ 3, which compares
well with the mean vertical flux measured in the Monte
Carlo simulation.

Overall, the results indicate that existing analytical
stochastic models are able to accurately predict average
hydraulic conductivity and flow conditions in an unsaturated

soil, even if soil heterogeneity exceeds the limitations
assumed in the analytical models. From a practical point
of view, the analytical method should be a useful tool to
predict the average behavior of the flow in unsaturated zone
(Table 3).

5.3 Analysis and comparison of second moments
(variance)

The second moment of a RSF is a measure of the uncertainty
in our ability to predict soil water tension and flux. Accuracy
in predicting variability ofh, y andq is important not only to
estimate average soil water flux, but to determine the
potential uncertainty of solute transport in soils23. Here,
we analyze the second moments obtained from the Monte
Carlo simulation in their dimensionless form. The dimen-
sionless variance ofy, h, qx andqz are defined by:

j92
y ¼

j2
y

j2 (13)

j92
h ¼

j2
h

j2l2
fz

(14)

j02
qx ¼

j2
qx

j2K2
m

(15)

j02
qz¼

j2
qz

j2K2
m

wherel fz is the vertical correlation scale off. The variance
factor j2 is given by:

j2 ¼ j2
f [1þ 2rzGH þ (zGH)2] (16)

where z ¼ ja/j f. The four dimensionless variances are
plotted as functions of four independent variables: soil
variability, j2

f , mean soil water tension,H, anisotropy
ratio, v and dimensionless vertical correlation scale,Gl fz.
Results are shown in a 43 4 matrix diagram (Fig. 4).

Table 3. Comparison of the numerical and first-order analytical mean of dependent RSFs headh, unsaturated hydraulic con-
ductivity y, horizontal velocity qx, and vertical velocity qz. The examples here are group A (isotropic, wet soils) withj2

y ranging from
0.01 to 0.9. Also shown is group B (anisotropic, wet soils) withj2

y ranging from 0.7 to 3.1 (see Table 1). Length units are in [m]. Time
units are arbitrary

A1 A2 A3
MCS anal. MCS anal. MCS anal.

h:mean ¹1.501 ¹1.500 ¹1.504 ¹1.500 ¹1.509 ¹1.500
y:mean ¹1.499 ¹1.500 ¹1.503 ¹1.500 ¹1.498 ¹1.500
qx:mean ¹3.18 3 10¹7 0.00 ¹1.03 3 10¹6 0.00 ¹4.35 3 10¹6 0.00
qz:mean ¹2.23223 10¹3 ¹2.2313 10¹3 ¹2.2303 10¹3 ¹2.2313 10¹e –2.293 10¹3 ¹2.2313 10¹3

B1 B2 B3
MCS anal. MCS anal. MCS anal.

h:mean ¹1.510 ¹1.500 ¹1.529 ¹1.500 ¹30.06 ¹30.00
y:mean ¹1.507 ¹1.500 ¹1.533 ¹1.500 ¹30.17 ¹30.00
qx:mean ¹9.95 3 10¹7 0.00000 3.493 10¹6 0.00000 ¹4.56 3 10¹18 0.00000
qz:mean ¹1.78 3 10¹3 ¹2.23 3 10¹3 ¹1.39 3 10¹3 ¹2.23 3 10¹3 ¹4.26 3 10¹14 ¹9.36 3 10¹14
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Fig. 4. (From left to right:) Variance of head, unsaturated hydraulic conductivity, horizontal flux, and vertical flux as functions of (from top
to bottom:) soil textural variability (indicated byj2

f ), mean soil water tension, dimensionless vertical correlation scale, and anisotropy ratio.
Dashed lines with hollow symbols represent spectral analytical solutions. Solid lines with black symbols are measured by MCS. Note that
results are shown by soil group: soil groups A and B are shown in figures (a)–(d), soil groups C and D are shown in figures (e)–(h), soil

group E is shown in figures (i)–(l), and soil group F is shown in figures (m)–(p).
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In soils with small variability, dimensionless variances
j92

y,j92
h,j92

qx, andj92
qz are independent ofj2

f , r, z and H,
according to the analytical model and as demonstrated by
the Monte Carlo results [Fig. 4(a–d)]. An exception is the
horizontal flux variance, which agrees with the analytically
approximated results only in the least variable example soil,
wherej2

f ¼ 0:01. MCS results of horizontal flux variance
exceed the analytical model by more than 40% atj2

f ¼ 1.
Differences reflect the leptokurtic distribution of the hori-
zontal flux and the neglect of higher order moments in the
analytical model.

Significant deviations of the analytical solution from
almost all the MCS simulated variances ofy, h and q are
observed in highly variable soils withj2

f $ 1. Simulated
variances of head are significantly lower than predicted by
the analytical model while the variability ofy andq is higher
than predicted. Differences increase withj2

f and are as much
as 10% for the variance ofy, 25% for the variance ofh, 50%
for the variance ofqz and 500% for the variance ofqx [Fig.
4(a–d)].

Notably, the simulated variance of vertical flux in aniso-
tropic soils [Fig. 4(d)] is smaller (not larger) than predicted
by the analytical model with differences of as much as 30%.
This may be the result of the fact that the absolute value of
the vertical flux is significantly smaller than estimated by
the first-order analytical model. Average vertical flux in the
most heterogeneous, anistropic soil example is less than
50% of the first-order estimate eqn (12). Hence, the coeffi-
cient of variation, which measures variability relative to the
average value, is up to 70% larger in the Monte Carlo
simulation than the coefficient of variation predicted from
first-order analysis.

High variability of y and, therefore, high variability of
flux may be observed not only in texturally heterogeneous
soils (largej2

f ), but also in relatively homogeneous soils
under dry flux conditions because of the dependency ofj2

y

on mean soil water tension, H. This is consistent with the
analytical model, which predicts that variability ofy, h andq
is proportional toj2, defined in eqn (16), but not only do the
MCSs show higher variability in drier soils. Also, the short-
comings of the analytical model with respect to the numer-
ical results for dry soils of moderate textural variability
(j2

f ¼ 1) are similar to those for the wet texturally very vari-
able soils [compare results atH ¼ ¹ 30 m in Fig. 4(e–h) to
those at j2

f ¼ 4 in Fig. 4(a–d)]. In both cases, the
unsaturated hydraulic conductivity is large (j2

y q 1). Like
saturated hydraulic conductivity variance in aquifer flow,
unsaturated hydraulic conductivity variance is the key vari-
able in determining the variability of soil water tension, soil
water flux, and ultimately solute transport in the vadose
zone. The Monte Carlo simulations demonstrate that the
accuracy of the analytical stochastic model is not a function
of soil variability (determined byj2

f andj2
a) alone. It is also

a function of soil water tension or soil moisture content. Dry
soils, whether texturally more or less heterogeneous, are
dominated by highly heterogeneous flux conditions, for
which analytical stochastic models are necessarily of

limited applicability. Analysis and prediction of moisture
flux and transport of environmental tracers (e.g. natural iso-
topes) in deep soils of arid climate regions is, therefore,
more accurately represented by numerical stochastic meth-
ods. Nonetheless, for practical applications where high
accuracy (in the statistical sense) is not a requirement, ana-
lytical methods may give excellent preliminary results with-
out the expense of time-consuming numerical simulations.

Note that the unsaturated hydraulic conductivity variance
as a function of mean pressure head varies fundamentally
different in a soil with r ¼ 1 when compared to soils
with r ¼ 0. In soils with uncorrelatedf anda, differences
between analytical and numerical stochastic solution
increase as drier soil conditions are investigated due to
increasingj2

y. In soils with perfectly correlatedf anda, on
the other hand, the variance ofy first decreases as mean soil
water tension increases. This explains, why the analytical
stochastic results for the variance ofy, h andq are valid for
much drier soils ifr ¼ 1, than for soils wherer ¼ 0. For
soils with r ¼ 1, the critical soil water pressure is atH ¼

¹10 m and as shown in Fig. 4(e), differences between
analytical and numerical head variance are not significant
at H $ ¹20 m. In a much drier, albeit only moderately
heterogeneous soil (soil C3,H ¼ ¹30 m), the RSF variances
and their deviations from the analytical model are similar to
those in the wet, highly heterogeneous soil B3.

Changes in anisotropy ratio [Fig. 4(i–l)] and in the
dimensionless vertical correlation scaleGl fz [Fig. 4(m–p)]
have apparently no significant effect on the accuracy of the
analytically determined variances ofy and h. Only simu-
lated flux variances increase significantly at largeGl fz, even
if j2

f remains constant. The increased variability of flux may
be due to the increased nonlinearity of the governing flow
equation caused by a tenfold increase inG. The increase inG
(coarser soil texture) is associated with a significant reduc-
tion of the average pore scale length,G¹1. Changes in soil
water tension may, therefore, occur over much shorter dis-
tances, creating larger head gradients and, therefore, an
increase in flux variance. The analytical model apparently
does not account for the effect of increased nonlinearity, due
to the linearization implicit to the analytical results.

5.4 Comparison of correlation and cross-correlation
functions

Correlation functions are a measure of the spatial persis-
tence and continuity of a RSF. Spatial continuity varies
with direction, often along principal coordinates. In some
cases, the direction of largest continuity, however, does not
coincide with the principal coordinate axis. For example,
the direction of major continuity ofqx is diagonal to the
principal flow axes. Therefore, the major axes of the multi-
dimensional correlation function ofqx would also be diag-
onal. Correlograms or variograms along the principal
coordinates, the standard tools in most empirical stochastic
analyses of flow processes, are therefore of limited value,
particularly for the analysis of soil water flux components
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(Fig. 2). The same argument holds for cross-correlation
functions, which often have multiple maxima and minima
and may not be symmetric (as opposed to correlation func-
tions of stationary RSFs, which, by definition, have a single
maximum at the origin and are symmetric with respect of
the origin). Here, we analyze the complete two-dimensional
correlation and cross-correlation field.

Fig. 5 demonstrates that empirically obtained local (non-
averaged) correlation and cross-correlation fields of y and h
are in excellent agreement with the theoretical correlation
functions derived from spectral analysis and reflect the
general patterns of unsaturated hydraulic conductivity and
soil water tension distribution found in a hypothetical soil
cross-section such as the one discussed above. For refer-
ence, the exponential input covariance function off, Cff, is
also shown. The correlation scales ofChh are much larger
than those ofCyy and are anisotropic even if the hydraulic
conductivity structure is isotropic, i.e. nonlayered. The head
covariance function reflects the strong spatial continuity,
particularly in the horizontal direction, observed in the
random soil of Fig. 2. Overall qualitative agreement
between analytical and MCS solutions, particularly with
respect to spatial structure, is found at all sites. For better
quantitative comparison, we use vertical and horizontal
cross-sections of the (normalized) correlation functionsr ff,
ryy, rhh. Examples of correlation functions of both, a mildly
and strongly heterogeneous soil (C1 and C3) are plotted in
Fig. 6. As expected, analytical and numerical correlation
functions for f are identical. Similar agreement is found
for ryy in all soils. Only in strongly heterogeneous soils,
the scale of the analytical head correlation function tends
to underestimate the head correlation scale determined from
the Monte Carlo results. The similarity ofryy or rhh (e.g.
Fig. 6) with results by Roth41 indicate that the spectral
method can be a powerful tool to also approximate stochas-
tic analysis of flow in isotropic, Miller-similar media soil
with Van Genuchten parametrization.

Covariancae fields forqx reflect the diagonal patterns,
which are observed in individual flux realizations discussed
earlier. Covariance ofqx is strongest in the diagonal direc-
tions (relative to mean flow direction) and very small in
vertically overlying or horizontally adjacent location, i.e.
in the vertical or horizontal direction. On the other hand,
the covariance function ofqz is highly anisotropic with the
major anisotropy axis in mean flow direction. This is not
surprising considering the strong vertical continuity and the
relative small lateral extent of the preferential flow channels
described above. Cross-sections of the normalized covar-
iance and cross-covariance functions show that analytical
flux correlation functions deviate significantly from numeri-
cally determined solutions, ifj2

y . 1. This applies again to
both, wet, texturally very heterogeneous soils (e.g. B3) and
dry, texturally rather homogeneous soils (e.g. C3, Fig. 6).
Vertical flux correlation functions in the MCS have a shorter
longitudinal correlation scale than analytical correlation
functions. The transverse hole-type correlation ofqz is accu-
rately predicted by spectral first-order analysis, while the
analytical model significantly underestimates the horizontal
correlation scale ofqx when the flux is highly variable
(Fig. 6).

The good agreement between analytically predicted and
numerically derived cross-covariance fields (Fig. 5) is
of practical importance for the estimation of cross-
covariances. Such agreement allows stochastic modelers

Fig. 5.Comparison of analytical (left) and MCS (right) covariance
and cross-covariance functions for an anisotropic soil (B1). The
shown MCS (cross-)covariances are obtained for sample point 5
(see Fig. 1) and based on 1000 sample realization. From top to
bottom: covariances of saturated hydraulic conductivity,f, unsa-
turated hydraulic conductivity,y, soil water tension,h, vertical
flux, qz, and horizontal flux,qx; cross-covariances betweenf and
h, betweenf and qz, and betweenf and qx. The x-axes show
horizontal lag-distances, they-axes vertical lag-distances. contour
intervals and shading are identical for analytical and MCS results.

All units of length in [cm].

268 T. Harter, T. C. Jim Yeh



to determine cross-covariance functions analytically and
calibrate their magnitude by Monte Carlo simulation or
field measurements. The ability to provide calibrated analy-
tical cross-covariance functions is an important step for sol-
ving a number of stochastic problems10–12,29,30,42,53,54.
Cross-covariances are also necessary for the implementa-
tion of conditional simulation24 and geostatistical inverse
modeling58. The Monte Carlo technique coupled with
analytical tools, therefore, presents an opportunity to
avoid the empirical determination of non-symmetric cross-
covariances from field data, which would be difficult, if not
impossible.

6 SUMMARY

Monte Carlo simulations of steady-state flow under gravity
drainage conditions in a deep, heterogeneous vadose zone
have been implemented:

— to provide exact results for the stochastic boundary
value problem approximated by existing analytical
models;

— to rigorously assess the accuracy of first-order analyti-
cal stochastic methods for a wide range of soil
conditions;

— to demonstrate the link between stochastic
theory29–31,53–55and empirical, numerical and field
results 1,26,38,41,43,51reflecting other, more realistic,
but also more complex, scenarios.

We present a comprehensive validation of existing ana-
lytical stochastic models of unsaturated, steady state flow by
developing and implementing an accurate numerical sto-
chastic analysis that allows us to investigate a large range
of soil conditions, particularly regarding a realistic range of
highly variable soil water flux conditions. To validate the

numerical approach, we show that sampling errors asso-
ciated with Monte Carlo simulation are in reasonable agree-
ment with theoretical Gaussian sampling errors and can,
therefore, be predicted a priori. In our simulations, we
achieve a high confidence limit (sample error variance of
less than 2% for both first and second moment) by averaging
stationary local sample moments over the simulation
domain. By the same token this study underlines the need
for using a large number of realizations in Monte Carlo
simulations, particularly if nonstationary conditions are
simulated where spatial averaging of local sample moments
is not possible.

In agreement with previous research, the Monte Carlo
analysis demonstrates that the analytical first-order pertur-
bation solutions for mean and variance of the dependent
RSFs,y, h and q, are in good agreement with numerical
solutions if the variance ofy, a dependent parameter, is
less than 1 (mildly to moderately variable flow). Two-
dimensional covariance and cross-covariance functions
are also in good agreement with numerically sampled
(cross-)covariance fields. Forj2

y $ 1 (moderate to
strong variable flow) spectral analysis of first-order
moments provides general insights, but the actual, fully
nonlinear MCS solutions for various dependent moments
differ significantly from the analytical predictions. In par-
ticular, flux variability is strongly underestimated by the
analytical model due to the highly skewed probability
distribution of longitudinal flux. The probability distribu-
tion of vertical flux is approximately log-normal, while
horizontal flux is characterized by a leptokurtic distribu-
tion. The probability distributions of horizontal and
vertical flux are not statistically independent. The
skewed, dependent probability distributions reflect the
preferential flow patterns found in individual realizations
of soil water flux. Differences between analytical and
numerical model are explained by the fact that the

Fig. 6. Vertical (solid lines and black symbols) and horizontal (dashed line and white symbols) cross-sections of the correlation functions
r ff, raa, rhh, rqz, qz andrqx,qx. Lines are from the spectral analysis, while symbols are results from MCS. Circles represent the average of the
eight correlation functions at sample point 1 through 9. Triangles are from the sample correlation functions at sample point 5, which has a
larger window and therefore gives values at larger lag-distances (Fig. 1). The vertical and horizontal correlations are plotted as functions of

vertical and horizontal correlation scales forf, respectively. The two examples are for soil C1 (top) and C3 (bottom).
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linearized Gaussian analysis does not account for such
highly nonlinear occurrence of preferential flow.

In agreement with analytical models, numerically
determined variances forh, y, qx and qz in wet, texturally
heterogeneous soils are found to be similar to those in
dry, texturally almost homogeneous soils with high varia-
bility of unsaturated hydraulic conductivity. The disparity
between numerical and analytical results for soils with
high textural variability is shown to be similar to that
found for relatively homogeneous soils under dry flow
conditions. In both cases,j2

y is large. It is, therefore,
important to recognize that the application of analytical
stochastic models to relatively homogeneous soils does
not automatically imply accuracy of first-order approxi-
mations. Rather, the analytical spectral model gives
accurate results only if the soil withj2

f , 1 is relatively
wet, i.e. soil water flux and not just texture is relatively
homogeneous.

On a more practical side, where accuracy is often
measured in orders of magnitude rather than in percent,
we are encouraged to find that for the large range of soil
texture and soil flux conditions, analytical stochastic
models are within a factor 2 of the actual moments.
For many engineering problems, the application of the
analytical model seems therefore justified, even if flow
is highly variable. Other factors, not included in the
simplified conceptual model underlying both the numer-
ical and analytical methods presented here, may contri-
bute more to estimation errors than the differences
observed between nonlinear numerical analysis and ana-
lytical results. In applications of Monte Carlo simulations
to real world sites, spatially variable soil moisture con-
tent, transient flux conditions near the land surface43,
nonstationary conditions with spatially variable mean
head (dictated by boundary conditions)26,33, the inclusion
of local hysteretic effects33, and the use of realistic para-
metrization of the hydraulic conductivity and soil water
retention function41,47 are important features that are not
accounted for by current analytical models. Yet, results
presented here show encouraging qualitative agreement
with many of those findings indicating that stochastic
unsaturated flow theory is capable of capturing many
of the fundamental principles of variably saturated flow
described in both field experiments and empirical com-
putational experiments despite the underlying simplifying
assymptions.
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APPENDIX A

A derivation of the spectral moments is given in Yeh et
al.53,54assuming thata is normally distributed. The analysis
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here, however, assumes thata is lognormally distributed.
Writing exp (A þ a9) ¼ exp (A) exp (a9), expanding the
exponential perturbation term in a Taylor series, truncating
the Taylor series to first-order, and neglecting second- and
higher-order terms, the first-order perturbation approxima-
tion of the unsaturated hydraulic conductivity is

Yþ y9 ¼ (F þ HG) þ (f 9 þ Gh9 þ HGa9), (A1)

whereG ; exp (A). Following the analysis of Yeh et al.53,54

for gravity flow, the spectral solution forh9, dZh9, then
becomes

dZh9 ¼
ikz(dZf 9 þ HGdZa9)

(k2
x þ k2

z ¹ iGkz)
(A2)

where dZf and dZa9 are the spectral representations off 9
anda940. The spectral and cross-spectral density functions
Spq(k), for pressure head, hydraulic conductivity and flux
perturbations in the special case of identical correlation
functions inf anda are:

Shh ¼
k2

z

(k2
x þ k2

z)2 þG2k2
z
[1þ 2rzHG þ (zHG)2]Sff (A3)

Sfh ¼ [ ¹Gk2
z þ ikz(k2

x þ k2
z)]

(Sff þ HGSfa)
(k2

x þ k2
z)2 þ (G2k2

z)
(A4)

Sah ¼
zr þ z2HG

1þ zrHG
Sfh (A5)

Syy ¼ 1þ
¹ k2

zG
2

(k2
x þ k2

z)2 þ G2k2
z

� �
[1þ 2rzHG þ (zHG)2]Sff

(A6)

Sqx:qx ¼ K2
m

k2
xk2

z

(k2
x þ k2

z)2 þ G2k2
z
[1þ 2rzHG þ (zHG)2]Sff

(A7)

Sqz:qz¼ K2
m 1¹

k2
z(G2 þ k2

z) þ 2k2
xk2

z

(k2
x þ k2

z)2 þ G2k2
z

� �
3 [1þ 2rzHG þ (zHG)2]Sff :

Sff and Saa may be obtained analytically or by numerical
integration from the assumed covariance functions3,32.
The cross-spectral densitySfa depends on the desired
cross-correlation betweenf(x) and a9(x þ y). If
Caa=j

2
a ¼ Cff =j

2
f , i.e. the correlation functions ofa9 and f 9

are identical, then

Saa ¼ z2Sff (A8)

Saf ¼ zrSff :

In this study, all spectrally derived covariances and cross-
covariances except those forf anda, are evaluated numeri-
cally through an inverse fast Fourier transform (inverse
FFT5,39 of the spectral density functions in Appendix A.
For the inverse FFT,Spq(k) is discretized such that the two-
dimensional covarianceCf (y) of f has 10 grid-points per
l f. It is evaluated at ally # 100l f.
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