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Abstract We present a geostatistically based inverse model for characterizing
heterogeneity in parameters of unsaturated hydraulic conductivity for three-
dimensional ¯ow. Pressure and moisture content are related to perturbations in
hydraulic parameters through cross-covariances, which are calculated to ®rst-
order. Sensitivities needed for covariance calculations are derived using the
adjoint state sensitivity method. Approximations of the conditional mean
parameter ®elds are then obtained from the cokriging estimator. Correlation
between parameters and pressure ± moisture content perturbations is seen to be
strongly dependent on mean pressure or moisture content. High correlation
between parameters and pressure data was obtained under saturated or near
saturated ¯ow conditions, providing accurate estimation of saturated hydraulic
conductivity, while moisture content measurements provided accurate estimation
of the pore size distribution parameter under unsaturated ¯ow conditions.

1
Introduction
Dif®culty in detailed characterization of spatially varying hydraulic properties of
®eld sites remains one of the main challenges for successful prediction of ¯ow and
transport in the vadose zone. Characterizing the vadose zone in detail using core
samples or small-scale hydraulic tests is prohibitively time-consuming and costly
and, consequently, is beyond the means of most studies. For these reasons there
has been much interest and research into using the more easily measured states of
the ¯ow system, i.e. pressure head and moisture content, to estimate soil hy-
draulic properties. In the following discussion we refer to the soil hydraulic
properties as primary information and measured states of the ¯ow system as
secondary information. This use of secondary information for the purpose of
determining hydraulic properties of the porous medium is the essence of the so-
called `inverse problem' in subsurface hydrology. While the ®eld scale inverse
problem is inherently ill-posed and the solution non-unique, the dif®culties en-
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countered in inverse modeling of ¯ow in the vadose zone are exacerbated due to
the nonlinearity introduced by the pressure-hydraulic conductivity relationship
for unsaturated ¯ow.

Recently some success in estimating hydraulic properties using data of mois-
ture content and water pressure has been attained by means of the geostatistical
approach to the inverse problem (e.g., Yeh and Zhang, 1996). The advantage of
the geostatistical approach is that its solution to the inverse problem is unique
and approximates the conditional mean of the hydraulic property ®elds. The
approach, however, is limited by the fact that cokriging is a linear estimator while
the relationship between hydraulic properties and secondary information in
unsaturated porous media is highly nonlinear. As a result, the usefulness of the
secondary information is not fully exploited. To circumvent this problem, Zhang
and Yeh (1997) developed an iterative technique, which incorporates the non-
linearity into the cokriged estimate, such that more detailed and accurate hy-
draulic property ®elds can be produced than with the linear estimator from the
same secondary information. However, for small parameter variance iteration
does not result in much improvement since the relationship between primary and
secondary information in this case is nearly linear and is well-described by the
cokriging estimator.

While these results appear promising, much work remains to be done. First,
the Gardner model of unsaturated hydraulic conductivity used by Yeh and Zhang
(1996) and Zhang and Yeh (1997) is convenient due to its mathematical simplicity
but fails to accurately portray the pressure ± hydraulic conductivity and water
content behavior observed in many types of geological media. In addition, only
two-dimensional steady ¯ow regimes have been considered in previous studies
but ¯ow in the vadose zone is inherently three-dimensional and time-dependent.
Therefore, the objective of this study is to extend the geostatistical inverse model
of Yeh and Zhang (1996) for two-dimensional steady ¯ow to three-dimensional
transient ¯ow regimes. We further include a more realistic model for the pres-
sure-hydraulic conductivity and pressure-water content relationships (van Ge-
nuchten, 1980). This enhancement allows for more accurate modeling of soil
water pressure ± hydraulic conductivity behavior and, perhaps, more account-
ability for the effect of variability of soil properties. It should be noted that the
new aspects of the model presented here are its three-dimensionality, time-de-
pendence, and incorporation of the van Genuchten relative hydraulic conduc-
tivity function. Following the model development we present tests of its validity
using one-dimensional fully determined inverse problems. Model utility is then
demonstrated using three-dimensional steady state stochastic inverse problems
for small variances of parameter heterogeneities.

2
Mathematical formulation
Flow of water in partially saturated porous media is described by

�bSs � C�w�� ow
ot
� r � �K�w�r�w� z�� �1�

In this expression w is pressure head, which is positive when soil is fully saturated
and is negative when the soil is partially saturated, and z is the vertical coordinate
positive in the upward direction. The term Ss represents speci®c storage and b is
one when w is positive and zero when w is negative. To describe the saturation-
pressure head relationship of unsaturated media, Mualem's model is used:
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S � hÿ hr

hs ÿ hr
� 1� jawjn� �ÿm �2�

where h is volumetric moisture content, hs is saturated moisture content, hr is
moisture content at residual saturation and a, n, and m are ®tting parameters
where m � 1ÿ 1=n. This relationship leads to the following expression for the
moisture capacity term, C�w�:

C�w� � a�nÿ 1��hs ÿ hr�S1=m�1ÿ S1=m�m �3�

The unsaturated hydraulic conductivity is then given by:

K�w� � Ks

���
S
p
�1ÿ �1ÿ S1=m�m�2 � KsKr �4�

(van Genuchten, 1980) where Ks is saturated hydraulic conductivity. The depen-
dence of these expressions on pressure is made explicit by substitution of (2). Based
on these models the unsaturated hydraulic properties of a porous medium can be
fully characterized if values of parameters, Ks, a, and n are speci®ed. Hence, we are
treating saturated hydraulic conductivity and the parameters a, and n as second-
order stationary stochastic processes in space in order to represent heterogeneity of
geological formations under unsaturated conditions. We further assume these
stochastic processes are characterized by exponential covariance functions with
known values of mean, variance, and correlation scale. An analysis of the relative
conductivity and water retention of a large number of soil samples by Russo and
Bouton (1992) gives some indication of the variance, anisotropy, and correlation
scale of these parameters. However, in general, the covariance behavior of soil
properties is site-speci®c and requires a priori evaluation. One approach to ob-
taining site-speci®c covariance behavior, which avoids detailed and extensive
sampling by using all secondary as well as primary information, is the maximum
likelihood estimation method developed by Kitanidis and Vomvoris (1983).

The saturated and residual moisture contents for this model are treated as de-
terministic constants based on the typically small variability of these parameters
(Russo and Bouton, 1992). Incorporation of spatial variability in hs and hr into the
model, however, is straightforward should it be important for a speci®c application.

Variability in pressure resulting from variability in Ks, a, and n is expressed to
®rst-order by a Taylor series expansion

w � H � f
ow
of

����
H;F;A;N

� a
ow
oa

����
H;F;A;N

� m
ow
om

����
H;F;A;N

�5�

where the sensitivity derivatives are evaluated around the means, H � E�w�,
F � E�ln�Ks��, A � E�ln�a��, and N � E�ln�n�� and the zero mean perturbations
are f � F ÿ ln�Ks�, a � Aÿ ln�a�, m � N ÿ ln�n�, and h � wÿ H. Likewise a
®rst-order Taylor series expansion of moisture content is

h � H� f
oh
of

����
H;F;A;N

� a
oh
oa

����
H;F;A;N

� m
oh
om

����
H;F;A;N

�6�

where H � E�h� and h0 � hÿH:
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Sensitivity derivatives in Eqs (5) and (6) are computed by the adjoint state
sensitivity method (e.g., Sun and Yeh, 1992). Following the derivation of Li and
Yeh (1998) the adjoint equation is

�bSs � C�H�� oU
ot
ÿ Ks

oKr

ow
r�H � z�rU�r � �KsKrrU� � d�xÿ xk; t ÿ tk�

�7�
where U is the adjoint state, subject to homogeneous boundary conditions and a
homogeneous ®nal condition at time t � sf , d is the Dirac delta function, and xk

and tk are the space and time coordinates of a datum. Equation (7) is solved
backwards in time to obtain U�t � 0� � U0 which is then used to derive the
adjoint state, U�, associated with the initial condition, based on the following
equation:

Ks
oKr

ow
r�H � z�rU� ÿ r � �KsKrrU�� � U0�bSs � C�H�� �8�

which is also subject to homogeneous boundary conditions. The sensitivity of
head at location i to the change in f at location k is then

owi

ofk
�
Z sf

0

Z
Xk

KsKrr�H � z�rU dX dt �
Z

Xk

KsKrr�K � z�rU� dXk �9�

where the space integral is only over the block or element, Xk, containing fk.
Using the same adjoint state variable, the sensitivity of head at location i to the
change in a at location k is

owi

oak
�
Z sf

0

Z
Xk

Ks
oKr

oa
r�H � z�rU dX dt �

Z
Xk

Ks
oKr

oa
r�H � z�rU� dXk

�10�
and to m is

owi

omk
�
Z sf

0

Z
Xk

Ks
oKr

om
r�H � z�rU dX dt �

Z
Xt

Ks
oKr

om
r�H � z�rU� dXk

�11�

Sensitivity of moisture content to the variability of the Ks, a, and n, para-
meters can be obtained directly from sensitivities to pressure through equa-
tion (2) as

ohi

ofk
� ÿm�hs ÿ hr��1�

ÿÿ aH�n�ÿmÿ1ÿÿ a n�ÿaH�nÿ1� owi

ofk
�12�

ohi

oak
� ÿm�hs ÿ hr�

ÿ
1� �ÿaH�n�ÿmÿ1

n�aH�nÿ1 ÿa
owi

oaK
ÿ H

� �
�13�

and
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ohi

ovk
� �hs ÿ hr�

"
1

n2

ÿ
1� �ÿaH�n�m

ln
ÿ
1� �ÿaH�n� on

ov

� 1

n
ÿ 1

� �ÿ
1� �ÿaH�n�ÿmÿ1�ÿaH�n

� ln�ÿaH� on

ov
ÿ a n�ÿaH�nÿ1 owi

ovk

# �14�

where on=om in Eq. (14) is one for m in the same block or element as hi and is zero
otherwise. The bars over a, n and m indicate that the evaluation uses the geo-
metric mean of these parameters.

Notice that one must derive the mean pressure head, H, ®rst in order to
evaluate the sensitivities discussed above. To do so, the mean equation is assumed
to be the same as Richards equation, (1), and K�w� and C�w� are assumed to be
described by Eqs (2)±(4) with parameter values set to their mean values (Yeh,
1998). Thus, the approximate mean pressure head can be obtained by solving

�bSs � C�H�� oH

ot
� r � �K�H�r�H � z�� �15�

In this study, a ®nite element program (MMOC3) developed by Sravastava and
Yeh (1992) was used to obtain the solution of (15) and (1) with heterogeneous
parameters assumed constant across each element.

Once the mean pressure head is derived, the above sensitivity equations were
used to calculate covariance and cross-covariances needed in our geostatistical
approach. Discretizing the ¯ow domain into ne blocks or elements, multiplying
Eqs (5) and (6) by perturbations f ; a; and m and taking the expectation results in
expressions for cross-covariance of head and moisture content with hydraulic
properties as

Rhf � Rff Jhf �16�
Rha � RaaJha �17�
Rhm � RmmJhm �18�
Rh0f � Rff Jh0f �19�
Rh0a � RaaJh0a �20�

and

Rh0m � RmmJh0m �21�

In these expressions Rab is notation for the covariance or cross-covariance matrix
E�ab� where the subscripts refer to the zero mean perturbations de®ned above.
The ne � ne matrices Rff , Raa, and Rmm are the assumed known input covariances
of the log transformed perturbations of the hydraulic properties Ks; a; and n.
Cross-covariance matrices Rhf ;Rha;Rhm;Rh0f ;Rh0a, and Rh0m have dimensions
ne � nd where nd is the number of head or moisture content data locations. The
matrices Jhf ; Jha; Jhm; Jh0f ; Jh0a, and Jh0m also are ne � nd and are obtained from
Eqs. (9±14) at the sample locations i � 1; . . . ; nd. In the formulation of
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Eqs. (16±21) we have assumed that the hydraulic properties Ks; a, and n are
independent since no suf®cient data set is available to quantify their cross-cor-
relation. Note that our assumption of independence represents the worst case,
meaning that information about one parameter tells us nothing about the others.

Covariances of the perturbations in pressure, h, and moisture content, h0, are
derived by multiplying Eqs (5) and (6) by the perturbations, taking the expec-
tation, and substituting Eqs (16±21) as

Rhh � JT
hf Rff Jhf � JT

haRaaJha � JT
hmRmmJhm �22�

Rh0h0 � JT
h0f Rff Jh0f � JT

h0aRaaJh0a � JT
h0mRmmJh0m �23�

The cross-covariance function between h and h0 is given by

Rhh0 � JT
hf Rff Jh0f � JT

haRaaJh0a � Jhm
TRmmJh0m �24�

In the aforementioned equations, T indicates transpose. Note that a second-order
approximation of these covariances can be obtained by the method developed by
Liedl (1994).

A ®rst-order estimate of the perturbations in the log-transformed hydraulic
properties, which matches data of the hydraulic property of interest and incor-
porates secondary information, can be obtained from the classical cokriging
technique which involves solving the equations

Cff Cfa Cf m Ch0f Chf

CT
fa Caa Cam Ch0a Cha

CT
f m CT

am Cmm Ch0m Chm

CT
h0f CT

h0a CT
h0m Ch0h0 Chh0

CT
hf CT

ha CT
hm CT

hh0 Chh

2666664

3777775
kf

ka

km

kh0

kh

266664
377775 �

Cf v

Cav

Cmv

Ch0v
Chv

266664
377775 �25�

In this matrix formulation of the cokriging eqs. Cff ;Ch0f ;Chf ;Caa;Ch0a;Cha;
Cmm;Ch0m;Chm;Ch0h0 ; Chh0 , and Chh represent covariances and cross-covariances of
the data locations, which are subsets of covariance and cross-covariance matrices
obtained from Eqs. (16±24). Under our assumption of hydraulic property in-
dependence, Cfa;Cf m, and Cam are matrices of zeros. The matrices kf ; ka; km; kh0 , and
kh are the cokriging weights applied to data of Ks; a; n, moisture content, and
pressure. On the right hand side are the covariances and cross-covariances of the
data locations with the location to be estimated. Covariances on the right hand
side of Eq. (25) are matrices with the number of data, Ks; a; n; h, or p rows and ne

columns and the cokriging weights are also matrices of the same dimensions.
Once the weights are evaluated, linear estimates of the hydraulic properties given
data vectors fd; ad; md; h

0
d, and hd are

f � kT
f fd � kT

a ad � kT
m md � kT

h0h
0
d � kT

h hd �26�

a � kT
f fd � kT

a ad � kT
v md � kT

h0h
0
d � kT

h hd �27�
and

m � kT
f fd � kT

a ad � kT
m md � kT

h0h
0
d � kT

h hd �28�
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for v equal f, a, or m in Eq. (25). The vectors f d; ad; md, h0d, and hd are data of
perturbations in ln Ks, ln a, ln n, moisture content, and pressure. The ne � 1
vectors f, a, and m are estimates of the perturbations in ln Ks, ln a, ln n.

3
Numerical examples

3.1
1-D flow
To verify the geostatistical inversion method a one-dimensional steady in®ltra-
tion problem is used. The one-dimensional ¯ow domain is a vertical column
64 cm in height discretized into 64 cubic elements 1 cm on each side. Boundary
conditions are prescribed pressure at the top and bottom of the column and no-
¯ow perpendicular to the sides. Three unit gradient ¯ow scenarios involving three
different top and bottom boundary conditions were examined. That is, pressures
at the top and bottom of the column were set equally to ÿ5, and ÿ50, and
ÿ300 cm for the three cases to re¯ect nearly saturated and drier mean ¯ow
conditions. The geometric mean of saturated hydraulic conductivity of the porous
medium of the domain is 2:694� 10ÿ4 cm/s and the geometric means of a and n
parameters are 0:0136 cmÿ1 and 2.3543 respectively. Saturated moisture content
of 0.37 and residual moisture content of 0.06 are presumed known and deter-
ministic. Variance of f is 0.0215, variance of a is 0.0660, and variance of m is
0.0079. All three variable parameters have a correlation length of 12 cm in the
vertical direction. Random ®elds of f , a, and m, were generated by the spectral
method (Gutjahr, 1989). With the random ®elds as input, MMOC3 (Sravastava
and Yeh, 1992) was used to compute head and moisture content distributions
along the ¯ow domain. Perturbations in head and moisture content were then
obtained by subtracting the mean head and moisture content from their corre-
sponding ®elds in the heterogeneous domain. The mean ®elds were obtained from
the solution to the approximate mean ¯ow Eq. (15).

Three fully determined (or deterministic, Yeh et al., 1996) inverse problems
associated with the one-dimensional ¯ow geometry are used to test our inverse
algorithm. Under saturated steady ¯ow situations, the inverse problem is fully
determined if all the heads and boundary ¯uxes are known precisely with no
measurement error. For the unsaturated ¯ow problem examined here, the inverse
problem will be unique if either all the heads or moisture contents and the
distributions of two of the three parameters are known perfectly. The inverse
problem is also unique if one of the three parameter ®elds is known in addition to
the information about all heads and all moisture contents. For these problems,
any good inverse model should identify the unknown parameter ®eld with a
reasonable accuracy. This is the objective of our test.

Figure 1a compares, at a uniform mean pressure of ÿ5 cm, the true f ®eld with
our estimate using all head data and 1 f sample. In this example the a and m ®elds
are assumed to be zero, i.e. parameters a and n are represented as constants equal
to their geometric means. Figure 1b compares the true a ®eld with the estimated
®eld based on 64 h data, and one a value, at a uniform mean pressure of ÿ50 cm,
where f and m are known. The comparison of the true m ®eld with the estimate
using 64 h data and 1 m datum, at a uniform mean pressure of ÿ300 cm, is shown
in Fig. 1c where f and a are known.

The estimated f ®eld using 64 head samples, 64 measurements of h (at a
uniform mean pressure of ÿ5 cm),and one measurement each of f and a is shown
compared to the true ®eld in Fig. 2a. In this example both f and a are random
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Fig. 1. Fully determined 1-D inverse estimates of: a) f using 64 h data and 1 f datum at
mean pressure ÿ5 cm where a and n are constants, b) a using 64 h and 1 a at mean
pressure ÿ50 cm where Ks and n are constants, and c) m using 64 h data and 1 m at mean
pressure ÿ300 cm where Ks and a are constants. The true ®eld is indicated by a solid line
and the estimate is shown as a dashed line

Fig. 2. Fully determined 1-D inverse estimates of: a) f using 64 h, 64 h, 1 f , and 1 a at mean
pressure ÿ5 cm where n is constant, b) a using 64 h, 64 h, 1 f , and 1 a at mean pressure
ÿ50 cm where n is constant, and c) m using 64 h, 64 h, 1 f , and 1 m at mean pressure
ÿ300 cm where a is constant. The true ®eld is indicated by a solid line and the estimate is
shown as a dashed line
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®elds and m is an assumed known constant. In Fig. 2b, a is estimated using 64 h,
64 h, 1 f , and 1 a at a mean pressure of ÿ50 cm where, again, both f and a are
random and m is known. Parameters a and m are variable and f is held constant in
Figure 2c while m is estimated using 64 h, 64 h, 1 m, and 1 a at a mean pressure of
ÿ300 cm. In all cases the geostatistical estimation procedure produces an accu-
rate depiction of the true underlying variable parameter ®elds for the fully de-
termined inverse problem.

Correlation between parameters and the system response in terms of pressure
and moisture content perturbations is a function of the mean pressure. Figure 3
shows the cross-correlation between parameters and pressure and moisture
content perturbations, at a location 29.5 cm from the base of the column. Cross-
correlation with f is shown in Fig. 3a, with a in Fig. 3b, and with m in Fig. 3c at
pressures of ÿ5;ÿ50, and ÿ300 cm. Correlation at a mean pressure of ÿ5 cm is
indicated by a solid line, correlation at a mean pressure of ÿ50 cm by a dashed
line, and correlation at a mean pressure of ÿ300 cm by a dotted line. Correlation
between perturbations in parameters and moisture content are further denoted by
small dot symbols while correlation between parameter perturbations and pres-
sure is shown as lines without symbols. Figure 3 shows that pressure perturba-
tions are more strongly correlated with perturbations in the log of saturated
hydraulic conductivity near saturation. Correlation of both moisture content and
pressure perturbations with a appears to increase from a mean pressure of ÿ5 to
ÿ50 cm then decrease from ÿ50 to ÿ300 cm. A similar behavior can be seen in
the correlation of m with both h and h in Fig. 3c except that the correlation
between m and h is positive at a mean pressure of ÿ5 cm and negative at a mean
pressure of ÿ300 cm.

Fig. 3. Correlation of pressure and moisture content at z � 29:5 cm with a) f , b) a, and c)
m. Solid line indicates correlation at mean pressure ÿ5 cm, dashed line indicates correlation
at mean pressure ÿ50 cm, and dotted line indicates correlation at mean pressure ÿ300 cm.
Correlation between moisture content and parameters is indicated with small dot symbols
while correlation between pressure and parameters is indicated by lines without symbols
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3.2
3-D flow
After testing our inverse model we applied it to a 3-dimensional steady state ¯ow
problem. The three-dimensional ¯ow domain is discretized into 6 nodes in the x
direction, 6 nodes in the y direction, and 21 nodes in the z direction for a total of
756 nodes and 500 elements. Note that in a ®nite element formulation pressure
and moisture contents are de®ned at the nodes while model parameters are
de®ned over the element. To resolve this for the inverse solution, pressure and
moisture content for an element were obtained as the arithmetic average of the
values at the nodes of an element. The spacing between nodes is a uniform 0.4 m
in the x and y directions and 0.1 m in the z direction resulting in a cubic domain
2 m on each side. Boundary conditions along the bottom at z � 0 m are a pre-
scribed constant pressure of 10 m for saturated ¯ow and ÿ2 m for unsaturated
¯ow conditions. Boundary conditions perpendicular to all four sides are no-¯ow.
At the surface of the domain, z � 2 m, a prescribed head boundary is speci®ed in
the central region from 0.8 m � x � 1.2 m and 0.8 m � y � 1.2 m while the
remainder of the top surface is treated as a no-¯ow boundary. Three ¯ow regimes
were studied: Case 1 represents ¯ow under a fully saturated condition where a
pressure head of 10 m is speci®ed for the top prescribed head boundary, Case 2
uses prescribed pressure boundary conditions of ÿ0:1 m at the top and ÿ2 m at
the bottom to represent unsaturated ¯ow at wetter conditions, and Case 3 uses
ÿ2 m at both top and bottom for unsaturated ¯ow at drier conditions. Param-
eters (Ks, a and n) are assumed to be spatial stochastic processes in three-di-
mensions. Geometric means of these parameters are 0.234 m/hr for Ks, 0.4233/m
for a, and 2.0594 for n, which correspond to the properties of a silt loam (Ste-
phens et al., 1987). Variance of the logarithm of perturbations in these parameters
are 0.0189 for f , 0.0213 for a, and 0.0024 for m. Correlation structures of all three
random parameters are assumed exponential with a correlation scale of 6 m in
the x and y directions and 1.5 m in the z direction. Water content at saturation hs

and residual water content hr are assumed constant in space and set to values of
0.43 and 0.1313, respectively. Seven well locations, shown in map view in Fig. 4,
were sampled at depths of 0.15, 0.45, 0.75, 1.05, 1.35, and 1.65 m for a total of 42
samples. Data of the primary variables, one each of Ks; a, and n are located at the
0.75 m depth of the center well.

Fig. 4. Map view of the surface of the
3-D domain showing sampling well
locations.
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The estimate of the f ®eld using 42 pressure perturbation data for Case 1 is
shown in Fig. 5a. Compared with the true f ®eld shown in Fig. 5b, much of the
detail of the true f parameter is revealed in our estimate due to the high corre-
lation between f and h in this case. An estimate of the a ®eld using 42 moisture
content data of Case 2 is shown in Fig. 6a compared to the true a ®eld shown in
Fig. 6b. Boundary conditions of ÿ0:1 m at the central region of the top and ÿ2 m
along the bottom produce relatively moist unsaturated ¯ow at which moisture
content and the a parameter are highly correlated. Thus signi®cant information

Fig. 5. a) f ®eld estimated using 42 h, 1 f , 1 a, and 1 m data under saturated ¯ow conditions.
b) True f ®eld.

Fig. 6. a) a ®eld estimated using 42 h, 1 f , 1 a, and 1 m data for unsaturated ¯ow conditions
with top boundary set to ÿ0:1 m and bottom boundary ÿ2 m. b) True a ®eld
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regarding the a parameter is obtained from moisture content data. An estimate of
m using 42 moisture content data under drier unsaturated ¯ow conditions (Case 3)
is shown in Fig. 7a and the true m ®eld is shown in Fig. 7b. While the correlation
between moisture content and m is stronger for drier unsaturated conditions than
for wetter conditions, only the general trend of the m ®eld and very little of the
detail is revealed by the moisture content data.

Figure 8 shows the correlation between the f ; a, and m ®elds, along the axis of
the central sampling well, with a pressure or moisture content perturbation at
z � 0:95 m. A strong correlation between the perturbations in pressure and the
log of saturated hydraulic conductivity occurs under saturated ¯ow conditions
(Fig. 8a). Likewise a strong correlation between moisture content perturbations
and the log of the a parameter is seen in unsaturated ¯ow. This correlation
explains the fairly accurate estimation of f and a seen in Figs 5 and 6. Correlation
is a good indication of estimation accuracy here because the variance is small and
thus the linear approximation is adequate. A weaker correlation exists between
moisture content or pressure perturbations and the log of the n parameter (Fig.
8c). This accounts for the poorer estimation of the m ®eld as seen in Fig. 8c. Also,
the linear assumption inherent in the cokriging estimator is probably less
accurate since the n parameter appears in the exponent of the van Genuchten
model.

4
Discussion and summary
Accurate geostatistical estimation of the hydraulic properties of unsaturated ¯ow
is possible using data of pressure and moisture content as long as the variances of
the hydraulic properties are small enough so that a linear approximation is valid.
For higher variances it is possible to incorporate nonlinearities through an iter-
ative approach. Results of the iterative improvement of estimates for higher
variance cases will be presented in a subsequent paper. In this analysis it is seen

Fig. 7. a) m ®eld estimated using 42 h, 1 f , 1 a, and 1 m data for unsaturated ¯ow conditions
with top boundary set to ÿ2 m and bottom boundary ÿ2 m. b) True m ®eld
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that correlation between parameters and system state is highly dependent on
mean pressure or saturation. This information is useful in the design of sampling
programs as it indicates the relative ``worth'' of secondary information in the
estimation process. Thus the modeling can be used to direct the most ef®cient and
cost-effective site characterization efforts.

We developed a three-dimensional variably saturated inverse ¯ow model for
estimating, to ®rst-order, perturbations in the log-transformed a and n param-
eters of the van Genuchten soil moisture ± hydraulic conductivity relationship
and the log-transformed saturated hydraulic conductivity using pressure and
moisture content data. The model appears to be insensitive to the relationship
between the correlation scale of the parameter heterogeneity and the size of the
domain. Good results were obtained in the 1-D case where the ¯ow domain was a
multiple of the correlation scale and in the 3-D case where the correlation scale
was a multiple of the domain size. The preliminary results presented here for
estimating heterogeneous hydraulic properties, using easily measured moisture
content and pressure data, demonstrate the promise of the geostatistical inverse
technique for identifying vadose zone model parameters.
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