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Abstract 

An efficient cosimulator is developed for generating both random hydraulic property fields 
and related flow regimes under either saturated or unsaturated conditions. This cosimulator 
combines a spectral random field generator, based on the Fast Fourier Transform technique, 
and first-order perturbation/spectral solutions for flow in saturated and unsaturated porous 
media. Owing to the first-order approximation of the simulator, flow regimes in several 
geological media with different variabilities are simulated to investigate the accuracy of the 
simulator. For mild and moderately heterogeneous geological media, the simulator is found to 
be very accurate in terms of pressure head field and flux distributions. In addition, the execution 
time of the simulator is substantially smaller than that of any classical numerical simulator. 
However, the accuracy of the simulator deteriorates as the geological medium becomes highly 
heterogeneous. 

1. Introduction 

The effect of heterogeneity on groundwater flow and transport has been an active 
research area over the past decade and a half. Past studies have included perturbation 
techniques (Bakr et al., 1978; Gutjahr et al., 1978; Dagan, 1979; Rubin and Dagan, 
1987a,b, 1988, 1989) as well as Monte Carlo studies (Smith and Freeze, 1979a,b; 
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Ababou et al., 1989; Tompson et al., 1989; Tompson and Gelhar, 1990). The pertur- 
bation methods often rely on spectral methods though Green’s functions have been 
used as an alternative approach (Naff and Vecchia, 1987; Rubin and Dagan, 
1987a,b). 

Flow in heterogeneous unsaturated porous media has been examined by Yeh et al. 
(1985a,b) and Mantoglou and Gelhar (1987a,b,c) who also applied a perturbation 
technique. 

The spectral perturbation methods and Monte Carlo techniques have been com- 
bined in previous work (Van Lent and Kitanidis, 1989; Harter, 1994; Gutjahr et al., 
1995). In Gutjahr et al. (1993, 1995) and Harter (1994) the spectral method is used 
along with linear estimation models (kriging and cokriging) to condition based on 
various types of data (e.g. transmissivity head, etc.). Harter and Yeh (1993) further 
show how a spectral approach can be used to develop starting solutions for steady- 
state unsaturated flow models that will lead to rapidly converging numerical solu- 
tions. The combination of spectral and simulation methods appears to be very 
promising for examination of flow and transport models, for application to real 
fields and for incorporation of conditioning data. 

In this paper we examine cosimulation (random field generation) of hydraulic 
conductivity, head, and flux under steady-state unsaturated and saturated flow con- 
ditions, and we investigate the limits of the linearized approach. Our focal point will 
be the effect of different input variances on the accuracy of the linearized (perturba- 
tion) approach. Normalized mean-squared errors of the heads and fluxes (between 
linear and non-linear solutions) are computed as a function of the input variance of 
the log-conductivity field. 

The linearized models for both saturated and unsaturated flow are recapped in the 
next section. The spectral method for generation of random fields (Gutjahr, 1989; 
Gutjahr et al., 1995) is developed in that section since it is used extensively in our 
approach. The general cosimulation approach is introduced and the set-up for the 
general approach is elucidated. In Section 3 the results from cosimulation are pre- 
sented and compared with full and accurate Monte Carlo simulation. The final 
section demonstrates an application of the cosimulation procedure to simulate trans- 
port in heterogeneous porous media. 

2. Model development 

2.1. Perturbation analysis 

Our investigation in this paper focuses on two-dimensional, steady-state, vertical 
flow in variably saturated vadose zones and on two-dimensional, steady-state, hori- 
zontal flow in fully saturated aquifers. The governing flow equation for both cases 
with unbounded domains can be expressed as 

v * [K(x, h)V$(x)] = 0 (1) 

where V is the two-dimensional Laplacian operator in x1, and x2; in the unsaturated 
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case, x1 is vertically downward; boldface letters indicate vectors; 4(x) is the total 
head, that is, 

@(x) = -p-X, + h(x) (2) 

For vertical flow in the vadose zone /3 = 1. For the saturated flow case ,B = 0. The 
pressure head is h(x) (positive under saturated conditions, negative under unsatu- 
rated conditions). K in Eq. (1) denotes the hydraulic conductivity which is assumed to 
take the form 

K(x, h) = %(x) exp P+@(x)1 (3) 

where KS(x) is the saturated hydraulic conductivity, which is assumed locally isotro- 
pic, and Q(X) is the soil pore size distribution parameter. For ,B = 1, Eq. (3) becomes 
Gardner’s unsaturated conductivity model (1958). 

After a logarithmic transformation and letting y(x) = In K(x), Eq. (1) becomes 

vy.vCj+v2C$=o (4) 
All variables depending on x are assumed to be stochastic processes in space or 
random field variables (RFV). The mean gradient is assumed to be in the x1 direction 
and is constant in space, i.e. 

E[Vf$]=-J=_ ; 
[ I 

We write o(x) = -/?x, + h(x) = -/?xl + H(x) + h’(x) and v(x) = Y(x) + y’(x), 
where H(x) = E [4(x)] + /?x,, V[-Pxl + H(x)] = -J, E [h’(x)] = 0, and E [y’ (x)] = 
0. Then Eq. (4) simplifies to 

V’/,’ + V Y . Vh’ + Vy’ . Vh’ - J. V( Y + y’) = 0 (6) 

In the first-order, linearized perturbation analysis the term 0~’ - Vh’ is dropped and 

V’h’+VY.Vh’= J.V(Y+y’) (7) 

The RFV parameters in Eq. (3) are written as In&(x) =S(x) = F(x) +f’(x) 
and lncr(x) = u(x) = A(x) + a’(x), w h ere again F(x) = E~(x)],A(x) = E[a(x)], 
E r’ (x)] = E [a’(x)] = 0. If the medium is fully saturated, then from Eq. (3) we 
have the equality y(x) =f(x). On the other hand, if the medium is unsaturated, 
Gardner’s K(h) model in Eq. (3) is expanded into 

y=F+f’+I’exp(a’)(H+h’) (8) 

where we denote I’ = exp (A), which is the geometric mean of cr. The exponential 
peturbation term exp (a’) in Eq. (8) is expanded in a Taylor series. After all terms 
involving products of two or more perturbation terms are dropped (including second 
and higher order powers of a’ in the Taylor series), the mean Y(x) and the perturba- 
tion y’(x) are written for the general saturated/unsaturated flow case 

y=F+/?l-‘H 

y ’ = f ’ + ,Brh’ + @rHu’ (9) 

Then expansion of Eq. (7) with Eq. (9) yields the generalized linear perturbation flow 
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equation for saturated/unsaturated flow 

V2h’ + V(F + /3l?H). Vh’ = J- V(F + pI’H +f’ + PI%’ + ~I’Hu’) (10) 

The RFVf and a are assumed second-order stationary, and consequently F and I’, 
like J1, are constant in space. In the unsaturated vertical flow case (/3 = l), H is also 
assumed to be second-order stationary, i.e. the mean pressure head is uniform over 
the entire soil, and water flux therefore driven by gravity (J1 = 1). With Eq. (5) the 
general flow equation (10) then simplifies to 

v2h’=~1 (11) 

Similar to the analysis by Yeh et al. (1985a), the first-order perturbation of flux can be 
derived from Darcy’s law 

4(x) = -K(x, h)V#) (12) 

where q is the flux or Darcian velocity. Expanding Eq. (12) with Eq. (9), and using 
perturbation notation, the first-order mean and perturbation of the two flux compo- 
nents ql and q2 are second-order stationary and are 

(41) = -&J, (13a) 

(q2) = -K& = 0 W) 

4; =-K, WC) 

where K,,, = exp (Y ). Note that the total flux q = (q) + q’. The pore velocity is 
computed by dividing q with the effective water content 8, (effective porosity in the 
saturated flow case). For demonstration purposes and simplicity 0, is here assumed to 
be spatially homogeneous. For practical applications, 19, must be computed as a 
function of h, whereby the independent parameters of such a function may be RFV. 

2.2. Spectral analysis and cosimulation 

If a process V(x) is second-order stationary with mean 0 and covariance function 
C,(c) then there exists a unique (with probability one) complex process Z(u) with the 
following properties 

Co 

V(x) = 
J 

exp(i27m.x) dZ(u) (14 
-cc 

E [dZ(%) dZ(ui)l = 
S,(u)du if u = uk = q 

0 otherwise 
(15) 
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&v(4 = exp (-i27~u.<)C,(<) dt (16) 
--M 

E[dZ(u)] = 0 (17) 

Here we use the convention that multiple integrals and sums are represented in 
vector notation. Thus 

cc CO 00 

.[.[ 
G(u,, u2) du2du1 = 

s 
G(u) du (18) 

-m -00 --oo 

and 

J,=-N, J2=-N2 J=-N 

where 

(19) 

S,(u) is called the spectral density for the process V(X) and is a measure of how the 
variance is spread across the frequency space (designated by u). In addition C,,(t) can 
be recovered from the spectral density by the inverse Fourier Transform 

C”“(<) = i exp (i2~~[=u)S,(u) du (20) 
--oo 

Discussions and proofs for the spectral representation theorem can be found in 
Koopmans (1974), Priestley (1981), and Lumley and Panofsky (1964). Important 
aspects include the uniqueness, and the connections of the dZs and the spectral 
density S,,,(u). 

Applying the spectral representation (14) and uniqueness to Eq. (1 I), wherej”. (I’, 
and h’ are assumed to be second-order stationary, the first-order flow equation has an 
explicit solution 

-i(2n)Jau 
dZh(U) = (27~)~ + ipl?27rul 

[dZf(u) + ,OlXdZ,(u)] (21) 

where u2 = u . u. Note that the spectral densities defining the dZ/ and dZ, processes, 
and hence the covariance functions of thef and a processes need not be identical. 

With the same approach, the spectral representation of the second-order stationary 
flux perturbation q’ can be derived from Eqs. (13c), (13d), and (14) 

dZ,,(u) = -Km[dZf(u) + PrHdZ,(u) + (pr + i27q) dZ/z(u)l 

(22) 
dZq2(u) = -Kmi2m2dZh(u) 
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Eqs. (21) and (22) along with the spectral representation (14) form the basis for the 
cosimulation method. They provide explicit solutions to the first-order flow equation 
(11) and to the first-order form of Darcy’s law (13) given the spectral representation 
dZf and dZ, of realizations of the f and a random fields. Eqs. (21) and (22) are 
coupled with an expansion of the integrals into sums, and the sums are then evalu- 
ated using a Fast Fourier Transform (FFT, Brigham, 1988). 

We now address the question of how to construct the dZf and dZ, processes. For 
an arbitrary mean 0 second-order stationary process consider the spectral representa- 
tion and an expansion of the integral 

&II 

V(x) % 
J 

exp (i2m - x) dZ(u) 

-&II 

M-l 

g c exp (i2uk +x) dZ(uk) 
k=-M 

The integrals are truncated at U,,, and we further discretize 

x = (JIAx,,J,Ax,) = Jo Ax 

where 

a 0 k = (a,b,, a&) 

In addition the uks are discretized into equi-spaced intervals: either 

uk=k@h 

(23) 

(24) 

or 

uk = (k + 1/2) 0 Au (25) 

In the applications presented here we use the first form for uk while the second form is 
used in Gutjahr et al. (1995): the differences are minimal. 

With these choices the expansion in Eq. (23) becomes 

M-l 

V [J o Ax] = c exp [2ni(kl J1 Aui An, + k2 J2 Au~Ax~)] dZ[k 0 Au] 
k=-M 

M-l 

= c exp [2ni(klJ, /2M1+ kzJz/2k42)] dZ[k 0 Au] 
k=-M 

(26) 

where 

AuiAxi = 1/2M,, Auzxz = l/2& 

The sum in Eq. (26) is efficiently evaluated with the FFT. Finally the dZs are con- 
strained so that V(x) is real and so that Eqs. (15) and (16) are satisfied in discretized 
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form. The condition that V(i o Ax) be real is satisfied if 

dZ[k o AU] = dZ* [k 0 AU] 

for 

kl # -Ml, k2 # -M2 

and 

dZ[-k @ AU] = 0 if either k, = -Ml or k2 = -M2 

In addition dZ(0) is real in this set-up. 
To satisfy the conditions in Eq. (27) and dZs are constructed as follows 

175 

(27) 

dZ[k 0 Au] = [Ak + iBk] [S,r,,(k @ AU) Au,Au~]“~ 

where 

(28) 

E[A,] = E[B,] = 0; 

and 

Var(Ak) = Var(&) = l/2 for kl > 0, -M2 - 1 5 k2 5 M2 - 1 

To satisfy Eq. (28) we further take the Aks and Bks to be independent of each other. 
Under these assumptions it should be noted that by Lyapunov’s central limit theorem 
I’@@ Ax) is Gaussian as M approaches infinity (Gutjahr et al., 1995). One could 
generate non-normal random processes by taking the As and Bs to be uncorrelated 
but not independent. The practicality of such an approach has not been explored. In 
this paper our interest is in values of y(x) that are normal (namely, K(x) is log- 
normal). For the linearized system, h(x) and q(x) are then also normal or Gaussian. 

The random field generation off and a based on the FFT algorithm is further 
discussed in Gutjahr (1989), Gutjahr et al. (1995), and Harter (1994). The FFT based 
random field generator, where the spectral representations dZf(u) and dZ,(u) are 
essentially generated as realizations of uncorrelated random numbers (28), provides 
the additional advantage that random field realizations off and a need not be 
transformed into their respective spectral representation to compute the linearized 
solutions Eqs. (21) and (22). Certain discretization criteria must be met to assure that 
the truncation and discretization in Eq. (23) leaves it approximately identical to Eq. 
(14). Grid discretization should be such that at least five grid-points are within one 
correlation length, and the domain size should be at least ten to 20 correlation lengths 
(Gutjahr, 1989; Robin et al., 1993). The size of the random field should be even larger 
if discretization errors are to be avoided in the linearized solution of h, since h has a 
much longer correlation scale than the RFV f and a. The method is therefore 
unsuitable for generating relatively small random fields. 

In the following section, the linearized solutions hL (FFT of Eq. (21)) and qL (FFT 
of Eq. (22)) are compared with the ‘exact’ non-linear, numerical solutions hNL and 
&L, where the numerical model uses the boundary conditions from the linearized, 
quasi-infinite domain solution. For simplicity,S and a are assumed to be uncorrelated 
and have identical covariance functions. Field data such as those by Wierenga et al. 
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(1989) show thatf and u are weakly correlated and do not have identical covariance 
functions. Robin et al. (1993) provide a spectral method for generating weakly 
correlated random fields off and a with arbitrary covariance functions, which can 
be incorporated into the procedure described above. 

3. Comparison of linearized solutions with non-linear model 

3.1. Computational experiments 

Two hypothetical field sites are used for the comparison of the linearized solutions 
with the non-linear, ‘true’ solutions: an unsaturated, vertical cross-section of a het- 
erogeneous soil profile, and a saturated, horizontally planar field site (aquifer). Both 
sites are discretized into a domain with 1282 grid points with mean flow direction 
being parallel to the x,-axis. Gravity flow, i.e. unit mean gradient, J, = I, is 
assumed at the soil site. The mean gradient in the aquifer is set to J, = 0.01. 
The effective water content of the soil and the effective porosity of the aquifer are 
assumed to have negligible spatial variability and are treated as constants through- 
out the simulated domain. The input random field realizations off (saturated and 
unsaturated sites) and a (unsaturated site) have an anisotropic, exponential covariance 
structure 

c,o__exp _ * 4 
4 U-7 %‘Z 

V=f,a (29) 

where f&.(c) is the covariance function and 6,’ is the variance of the RFV V = f, a. 
Although not required by the model, it is here assumed that the covariance functions 
forf and a have an identical correlation scale X. Both sites are anisotropic with the 
anisotropy axes coinciding with the coordinate axes of the simulation grid. In the soil 
profile, the statistical anisotropy ratio (U = X,/X,) is set to 0.5, i.e. the major aniso- 
tropy axis is transverse to the mean flow direction. In contrast, the aquifer has a ratio 
‘u = 2.0; there, the major anisotropy axis is parallel to mean flow. The distance 
between two grid points in both dimensions is 0.2Xj, j = 1,2. Thus, the total length 
of the simulated domain in the jth direction is 25.6 Xi. For the soil site, two additional 
parameters must be defined. The dimensionless geometric mean of (Y is 
I” = I’Xi = 1.5 and the dimensionless mean pressure head H’ = I’H is -4.5. 
Cosimulated, linearized random field realizations of hL and qL are obtained for 
different variances off and a (see Table 1). 

The random field realizations off and a are used as input to MMOC2 (Yeh et al., 
1993), a Galerkin finite element model for solving the variably saturated flow equa- 
tion (1) and Darcy’s law (12). The model uses the Newton-Raphson method for 
solving the non-linear portion of Eq. (1) and a preconditioned conjugate gradient 
solver for the resulting linear finite element matrix equation. With hL as initial solu- 
tion, MMOC2 converges directly to the non-linear, fully perturbed solution ~NL, 
from which the flux qNL is then computed, also by the finite element method. The 
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Input variance off and a and resulting variance of y in the eight Monte Carlo simulations 

0.09 - 0.09 
0.46 - 0.46 
0.93 _ 0.93 
1.86 - 1.86 
0.01 0.01 0.11 
0.23 0.04 0.58 
1.12 0.04 1.13 
3.01 0.04 2.41 

The 6rst four Monte Carlo simulations are in saturated porous media. The last four simulations in 
unsaturated porous media. 

application of hL as initial solution or initial guess for a numerical model leads to 
computationally very efficient steady-state solutions IzNL, particularly in the unsatu- 
rated case (so-called ASIGNing technique, see Harter and Yeh, 1993). Also, the 
linearized initial solution provides a random constant head boundary condition for 
the numerical model. Hence, the numerical model conceptually represents a portion 
of a semi-infinite random medium. 

3.2. Linearized and non-linear realizations of h and 9 

Single realizations of analytical, linearized unsaturated head and flux solutions are 
compared with numerical solutions to study the general, qualitative accuracy of the 
spectral approach. Harter and Yeh (1993) have shown that the computation of a 
linearized solution of h is on the order of three magnitudes faster than the finite 
element computation of actual, non-linear h and q solutions. In the following exam- 
ples, the CPU-time for computing a single linearized solution hi_ and qL on a 
128 x 128 grid is 3.5s on an IBM RS6000/560 workstation. Using hL as initial 
solution, the CPU-time for the finite element solution hNL and qNL varies between 
approximately lo* s for small input variances and approximately lo3 s for large input 
variances. If unsaturated flow solutions were computed without hL as initial solution, 
CPU-time would be up to an additional order of magnitude larger. 

For small variances in unsaturated hydraulic conductivity (4 = 0.1, unsaturated 
flow) or in saturated hydraulic conductivity ($ = 0.1, saturated flow), the linearized 
flow SOhtiOUS hL and qL and the non-linear finite element SOhtiOUS hNL and qNL are 
very similar (Fig. 1). The distinguishable areas of low and high values are identical 
throughout the domain. The different spatial patterns between the h, q1 and q2 solu- 
tions are caused by the different physical behavior of the three quantities and are well 
explained by analytically derived correlation functions (Harter, 1994). 

For the same variance ratio C = a,/~~, the input variances off and a have no 
impact on the linearized solution other than scaling the actual values of h, ql, and 
q2 proportional to the input variance (see Eqs. (21), (22), (28)). In our experiments, C 
changes slightly, but overall the pattern of the particular linearized realization in 
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Fig. 1. Unsaturated flow, mild spatial heterogeneity (u$ = 0.1): realization of a linearized and non-linear 
head and flux solution, given the same random field realizations off and a. The linearized, analytical 
solutions are in the left column (indicated by subscript L), the non-linear, numerical solutions are in the 
right column (indicated by subscript NL). The numbers on the axes indicate the dimensionless distances 
xj/Aj, j = 1,2. The absolute length ratio of the axes is x1 /x2 = 1. The direction of mean flux is vertically 
downward. The anisotropy ratio is X,/A, = 0.5. Lighter colors represent higher negative pressure (dry 
areas) and high flux (strong downward flow). 

Fig. 1 changes little, when regenerated with the same random number seed at the 
higher variances indicated in Table 1 (compare Figs. 1 and 2). However, the exact, 
non-linear solutions of h and q develop very peculiar features at higher input 
variances (4 2 0.5). These are unique to the non-linear solutions and are not 
captured by the linearized analytical solutions. As shown in Fig. 2 for o$ = 2.4, 
steep vertical gradients develop in the head field with wet areas of low water tension 
(dark shade) frequently located immediately upstream of very dry areas of high water 
tension (white areas). This gives the hNL map in Fig. 2 the characteristic ‘clouds in the 
sky’ character. In Fig. 3, a longitudinal cross-section of the unsaturated head is shown 
for realizations with different variances of y (but identical random number seed): at 
low variances, the analytical and numerical solutions match very closely. As the 
variance of y increases, slopes where pressure head increases in the positive 
(downward) x1 direction (decreasing tension) reduce their angle with respect to xl. 
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_ 
Fig. 2. Unsaturated flow, strong spatial heterogeneity (4 = 2.4): realization of a linearized and non-linear 
head and flux solution, given the same random field realizations off and a. The random number seed is 
identical to that used for generating the f and a realizations from which the solutions in Fig. 1 were 
obtained. Labeling as in Fig. 1. 

The same observation is not made for the analytical, linearized head solution. Also, in 
the non-linear head solutions, the change from increasingly wet to increasingly dry at 
the locations of the wettest areas (least tension, largest head) becomes more abrupt 
giving the hNL gray-scale map in Fig. 2 its characteristic sharp contrasts. 

As a consequence, the numerical, non-linear realizations of q1 and q2 for a: 2 0.5 
are significantly different in their spatial patterns from the linearized solution, even 
though the general locations of areas of relatively lower or higher Darcian velocities 
are preserved. The non-linear longitudinal Darcian velocity map qI,NL of a highly 
variable flow field (Fig. 2) shows a characteristic preferential flow pattern, previously 
described in Moreno et al. (1989) and Harter (1994). A braided network of channels 
characterizes flow at higher variances of y. The majority of flow takes place in these 
channels. Preferential flow channels are surrounded by relatively larger areas of the 
soil cross-section that contribute very little to the overall flow, i.e. have relatively 
small longitudinal and transverse velocities. 

Plotting the absolute values of the non-linear, transverse Darcian velocity q2.NL 
yields a map with very similar patterns as the non-linear, longitudinal Darcian 
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Fig. 3. Unsaturated flow: vertical cross-section of the dimensionless pressure head perturbation profile at 
xr/Xs = 15. The linearized solution is plotted as solid curve, the numerical, non-linear solution as dotted 
curve. Arrows indicate portions of the pressure head cross-sections, where, with increasing variance CT;, the 
slope of non-linear solution significantly deviates from the slope observed for the linear solution. All 
realizations are based on the same random number seed. 

velocity, indicating a significant correlation between the absolute values of the two 
flux components. No such correlation between the linearized flux components ql,L and 
q2,L is observed. From the maps of ql,m and q2.m in Fig. 2 it is seen that the largest 
transverse fluxes (in either the positive or negative direction) occur in the preferential flow 
channels where longitudinal fluxes are also large, because the channels are not parallel to 
the x1 axis but meander randomly back and forth around the mean flow direction. In 
those portions of the channels which have a significant angle against the mean flow 
direction, the transverse velocity component must be very large for continuity reasons. 

The preferential flow channels in the non-linear solution are relatively well defined 
and contrast starkly with the surrounding low-velocity areas giving the velocity maps the 
character of a very focused picture when compared with the rather ‘blurry’ map of the 
analytical velocity components. Very similar observations are made for the realization of 
h, 41, ad q2 in a saturated flow field with reciprocal anisotropy structure inf (Fig. 4). 

3.3. Statistical evaluation 

The mean square error (MSE) of the linearized solutions, i.e. the mean squared 
difference between the linear and non-linear solutions of h, ql, and q2 are averaged 
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Fig. 4. Saturated horizontal flow, strong spatial heterogeneity (CJ$ = 1.8): realization of a linearized and 
non-linear head and flux solution, given the same random field realization off. The non-linear solutions are 
in the top row, the linearized solutions in the bottom row. Labeling and relative grayscale as in Fig. 1. The 
direction of mean flux is again from top to bottom. In contrast to Fig. 2, the anisotropy ratio is Ar /Xz = 2.0. 

over the interior of the domain (excluding a zone of six columns and six rows along 
the boundary of the domain) and over 50 realizations. The result is normalized with 
respect to the linear variance of each RFV, respectively (Fig. 5). Owing to the 
linearization, the normalized MSE increases with the input variances o$ (unsatu- 
rated flow) and 4 (saturated flow). In the unsaturated example, normalized MSE 
is higher than in the saturated example. A possible explanation is the linearization of 
Eq. (8), which affects only the linearized solution to unsaturated flow. MSE of the flux 
solutions are significantly higher than those of the head solutions in both saturated 
and unsaturated flow. For strongly heterogeneous porous media, average differences 
between linear and non-linear flux solutions are of the same order as the (linear) 
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o.ooF. 
(a) 0m5 “O 4 

1.5 2.0 O-O 

normalized mean equare error 

Fig. 5. Normalized mean square error of the analytical, linear solutions h, q,, and q2 for unsaturated flow 
(a) and saturated flow (b) as a function of the input variance. 

spatial variability of the flux solution, which confirms the qualitative assessment made 
in the previous section. Such large MSE is partially caused by differences in prob- 
ability density function (pdf). The linear pdf for both head and flux components is by 
definition Gaussian. The sample pdf of non-linear head values is also approximately 
normal. In contrast, we found that the non-linear flux components yield a strongly 
skewed sample pdf. The longitudinal flux behaves, in fact, like a log-normal pdf. 

To further illustrate the differences between linear and non-linear solutions, we 
compare the sample variances of h, ql, and q2 for both the unsaturated and saturated 
flow case as a function of CJ$ and c$, respectively. The sample variances are calculated 
as average of the sample spatial variances of 50 independent realizations. We refer to 
the sample variance of the linearized solutions as ‘linear sample variance’ and to the 
sample variance of the non-linear solutions as ‘non-linear sample variance’. 

In the unsaturated flow case, the linear sample variance is almost directly propor- 
tional to rr: (the ensemble variance is exactly proportional if 5 is constant). With 
increasing spatial variability off and a, the non-linear head variance, in contrast, 
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Fig. 6. Average normalized head variance of the 
examples (b) as a function of the input variance. 

unsaturated flow examples (a) and the saturated flow 
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Fig. 7. Average normalized flux variance of the unsaturated flow examples (a) and the saturated flow 

examples (b) as a function of the input variance. 

does not increase as fast as the linear head variance (Fig. 6(a)). Differences become 
significant for variances larger than e$ = 0.5. At 4 = 2.4 the non-linear head var- 
iance is approximately 20% lower than the linear head variance. 

For saturated flow, the relative differences between linear and non-linear head 
variance are approximately the same, but with the non-linear head variance being 
larger than the linear head variance (Fig. 6(b)) owing to an aspect ratio v larger than 
1. Harter (1994) determined empirically that differences between the variances of hL 
and hNL are negligible only for v = 1 (isotropic media), even in highly variable flow 
fields (4 = 3.2). 

Unsaturated and saturated flux variances are significantly higher in the non-linear 
solutions (Fig. 7). Again, the sample variances of the linearized solution are directly 
proportional to the input variance off (and a). The sample variance for the non- 
linear flux matches well with the sample variance from the linearized solution, if the 
flow variability is small (cr: = ~7; = 0. l), but increases with higher input variances off 
(and a). At large variances (c: = 2.4 for unsaturated flow and 4 = 1.8 for saturated 
flow), the non-linear variance of both flux components exceeds the linearly obtained 
variance by a factor 2-3. 

Significant differences are also observed for the mean longitudinal flux. The mean 
of the linearized longitudinal flux is practically constant owing to the negligible 
change in 5 between the different experiments (Table 1). The mean of the non- 
linear, unsaturated flux solution decreases by up to 15% (Fig. 8(a)) while the mean 
of the non-linear, saturated flux increases by over 20% in highly variable porous 
media (Fig. 8(b)). The differences between the unsaturated and the saturated case 
are again caused by the fact that the anisotropy ratios are reciprocally identical. These 
findings are in agreement with Yeh et al. (1985b) who derived an effective 
hydraulic conductivity based on a mixed first- and second-order perturbation 
approach. They have shown that the ratio &/Km of the effective hydraulic 
conductivity K, (to which the mean flux is proportional) and the geometric 
mean hydraulic conductivity IL, (the effective hydraulic conductivity to first 
order, see Eq. (12)) is equal to or greater than 1 for aspect ratios v > 1 and 
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Fig. 8. Mean normalized longitudinal velocity of the unsaturated flow examples (a) and the saturated flow 
examples (b) as a function of the input variance. 

smaller than 1 for v 5 1 unless l?Xr is very large. For a more detailed discussion 
of the differences between linear and non-linear stochastic solutions of h, ql, and 
q2, the reader is referred to Harter (1994). 

4. Application to transport simulation 

Just for its own sake, the Monte Carlo simulation of h and q by the linearized 
cosimulation method is of little practical use. All moments of h and q can be derived 
analytically (Bakr et al., 1978; Gutjahr et al., 1978; Yeh et al., 1985a, b; Harter, 1994). 
Cosimulated h and q realizations can only be advantageous when used as input to the 
Monte Carlo analysis of other random field variables such as the displacement of solute 
particles, the travel time of solute particles, the concentration of a solute plume, or the soil 
moisture distribution. As an example of such an application, the solute displacement and 
solute travel time are computed numerically given the flux field qL. The results are 
compared with those transport results obtained from the non-linear flux field qNL. 

Such simulations have in the past often been used to determine the macrodispersion of 
solutes in heterogeneous porous media. Bellin et al. (1992) compared the results of 
numerical simulations (non-linear flow and non-linear transport) with a number of 
other combined flow and transport models, some of which are linear, some non-linear. 
Analytical, linearized transport models have been proposed to compute the macrodisper- 
sion and travel time distribution of solutes (Dagan, 1982,1984,1988; Gelhar and Axness, 
1983; Neuman et al., 1987; Cvetkovic et al., 1992; Dagan et al., 1992). Non-linear, semi- 
analytical transport models have been suggested more recently (Rubin, 1990; Neuman 
and Zhang, 1990; Zhang and Neuman, 1995). Here, a numerical transport model is used 
for the non-linear analysis of solute particle transport to assess the effect of linearizing the 
flow equation as suggested in the previous section. 

Particle transport is computed for each realization qL and qNL. An explicit forward 
particle tracking method is employed 

Xj(fm+‘) = xj(f”) + qiLxim)l &” j= 1,2 
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Fig. 9. Unsaturated flow: realization of streamlines using the linearized flux realization (a) (c) and (e) and 
the non-linear flux realization (b) (d) and (f) at different variances of y: 0.1 (a and b), 1.1 (c and d), and 2.4 (e 
and f). Axes labeling as in Fig. 1. Mean flow is vertically downward. 

The flux qL between the grid points of the cosimulated realization and the flux qNL 
between the nodes of the finite element solution is computed through bilinear weight- 
ing. The time-step At”’ is determined such that at each step the particle moves by l/4 
of the distance between grid points or nodes in one of the two directions and by less 
than l/4 of the grid or node spacing in the respective other direction. Three particles 
are tracked through each realization. All of them are inserted at a distance 2X1 from 
the upstream boundary. The first particle is inserted upstream from the center of the 
simulated domain, the other two particles are injected at a lateral distance 3X2 on each 
side of the first particle. The particle arrival time at the outflow boundary is used for 
statistical analysis. For each set of input variances (Table l), 50 Monte Carlo 
simulations (MCS) are implemented, resulting in 150 quasi-uncorrelated particle 
trajectories. 

At small variances (a; = 0.1) the travel paths based on qL and on qm are practi- 
cally identical (Figs. 9 (a) and (b)). Significant differences are seen in the travel paths 
of particles at moderate variances (4 = 1.0) (Figs. 9 (c) and (d)). At even larger 
variances, the travel paths of many particles in the qL realization indicate non-zero 
curl in the analytical solution qL, i.e. qL is not free of artificial sinks or sources 
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(Figs. 9 (e) and (f)). The observed artificial sinks are not due to the transport model, 
since they do not occur if qNL is used as flux field. Mass balance is conserved owing to 
the particular formulation of both analytical and numerical solutions: the first-order 
perturbation equation (11) is mass-conservative and the finite element formulation 
for the non-linear solution is based on a mass-balance equation. The curl in the linear 
(Eulerian) flux field, which can be caused by even small mass-balance errors must 
therefore be explained by the discrete evaluation of Eq. (22) and the fact that the 
linear solution does not preserve the strong correlation of log lql 1 and log Iq21 found 
for the nonlinear flux field. 

Not only are the travel paths based on the non-linear solution curl-free, they are 
distinctly different from those computed for the linearized flux field. The most impor- 
tant difference is the stronger clustering of travel paths along the preferential flow 
channels shown in Fig. 2. The clustering of travel paths is much weaker in the linear 
flux based solutions (Fig. 9(e)). This result is expected given the different nature of the 
qL and qNL realizations (see above). 

In many applications, the character of the individual travel paths is of much less 
interest then some stochastic measures about the ensemble of travel paths or the 
ensemble of the associated travel times. Here, the sample cumulative distribution 
function (CDF) of arrival times at a distance x1 = 23.6X1 are studied. They are 
found to be highly skewed both for linear flux based particles (CDFi) and for non- 
linear flux based particles (CDFNL). Fig. 10 therefore shows the sample CDF of the 
logarithms (natural log) of the arrival time. At very small variances (4 = 0.1) the 
CDF,_ matches very well with the CDF NL. At large variances of y and f, small 
differences are observed between CDFL and CDFNL, which mainly reflect the 
observed differences in mean flux. But for practical purposes CDFL gives a very 
good approximation of CDFNL. The relative insensitivity of the CDF to the type 
of flux solution has several reasons. 

(1) only the arrival times of particles that arrive at the bottom boundary are 
included in the statistical analysis; particles that end in artificial sinks of the qL flux 
field are ignored. 

(2) the arrival time CDF is integrated over the entire width of the outflow boundary, 
which makes it insensitive to the transverse spatial distribution of the particle arrival 
location. 

5. Conclusion 

For the Monte Carlo simulation of unsaturated and saturated flow in heteroge- 
neous porous media a cosimulation technique has been developed that generates not 
only random fields of the saturated hydraulic conductivity and the soil pore size 
distribution parameter, but also cogenerates the first-order perturbation solutions h 
to the general flow equation (1) with Eq. (3) defining K(h), and the corresponding 
solutions q1 and q2 to Darcy’s law. The cosimulator is an extended spectral random 
field generator, which takes advantage of spectral perturbation analysis of saturated 
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Fig. 10. Sample cumulative distribution functions (CDF) of the arrival time of particles at the exit boundary 
(lower boundary in Fig. 9) for unsaturated flow (a) and saturated flow (b) in mildly and strongly hetero- 
geneous porous media: comparison of the CDF obtained from the linearized flux field realizations (solid 
lines) and the CDF obtained from the finite element, non-linear flux realizations (dashed lines). 

and unsaturated flow. Spectral analysis gives explicit spectral solutions to the first- 
order perturbation flow equation, which is a linearized PDE, whether flow is satu- 
rated or unsaturated. It also gives an explicit solution to the first-order perturbation 
form of Darcy’s law. The spectral representations off, a, h, and q are transformed to 
spatial random fields by FFT. 

For moderate variability in the flow field (c: < 1, C$ < l), the linear solutions hL 
and qL are very robust and should for many practical purposes be useful, since they 
can be computed in a fraction of the time necessary for the numerical, non-linear 
solutions hNL and qNL. For the unsaturated case, the reduction in computation time is 
up to three orders of magnitude. For saturated flow, the increase in computational 
efficiency is between one and two orders of magnitude. 

The application of the cosimulation procedure to the stochastic analysis of trans- 
port in heterogeneous, porous media was investigated. For moderately heterogeneous 
porous media, the travel paths of particles based on the linear flux field are very 
similar to those particle travel paths based on the non-linear flux field. For porous 
media of moderate variability, the cosimulated, linearized solutions of h and q are 
therefore a computationally efficient alternative to numerical models for implement- 
ing Monte Carlo simulations of solute transport. If the hydraulic conductivity 
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variability is very strong, non-linear flux fields are highly skewed and have strong 
preferential flow channels, which cannot be modeled with a linearized approach. This 
leads to distinctly different travel patterns of solute particles in the linear and non- 
linear flux field, In addition, the linear flux-field is not found to be free of curl. 
Artificial sinks and sources are therefore common and lead to mass-balance pro- 
blems in the transport solution. However, the arrival time distribution of solute 
particles is not very sensitive to the differences between qL and qNL. The computation 
of the arrival time CDF is an example of an application, where linearized cosimula- 
tion can successfully be applied even to very heterogeneous porous media. 
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