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Analytical Solutions for One-Dimensional, Transient Infiltration
Toward the Water Table in Homogeneous and Layered Soils

RAJESH SRIVASTAVA AND T.-C. JIM YEH

Department of Hydrology and Water Resources, University of Arizona, Tucson

Analytical solutions describing the transient soil water pressure distributions during one-
dimensional, vertical infiltration toward the water table through homogeneous and two-layer soils are
derived. Exponential functional forms K = K.e°“ and 6 = 6, + (8, — 6,)e " are used to represent
the hydraulic conductivity and pressure relation and the soil water release curve. Steady state profiles
are used as initial conditions. Hydraulic behavior of the soils during wetting and drainage processes is
discussed in terms of the pressure head and moisture content profiles and temporal variation of the
specific discharge. The solutions provide a reliable means of comparing the accuracy of various
numerical methods, especially in very dry layered soils.

INTRODUCTION

Analytical solutions to the Richards equation for unsatur-
ated flow under various boundary and initial conditions are
difficult to obtain because of the nonlinearity in soil hydrau-
lic parameters. This difficulty is exaggerated in the case
where soil is heterogeneous. Generally, one has to rely on
numerical approaches for predicting moisture movement in
unsaturated soils, even for homogeneous soils. However,
numerical approaches often suffer from convergence and
mass balance problems [Milly, 1985; Celia et al., 1990].
Therefore it is desirable to develop analytical solutions for
moisture flow in unsaturated porous media.

During the past few decades, many analytical and quasi-
analytical solutions to the unsaturated flow equation have
been developed (Philip, 1969]. Most of the solutions were
obtained using the exponential hydraulic parameter model
proposed by Gardner [1958]. Such an exponential model
allows us to linearize the governing flow equation, and
analytical solution to the equation thus becomes possible, A
detailed review of this approach for unsaturated flow prob-
lems was presented by Pullan [1990].

Solutions to the linearized unsaturated flow equations are
generally limited to steady state flow in semi-infinite, homo-
geneous soils. Transient flow analysis is rare and restricted
to semi-infinite domains (e.g., Braester, 1973; Warrick,
1973). Broadbridge and White [1988] presented analytical
solutions for transient flow in unsaturated porous media with
hydraulic constitutive relations different from the exponen-
tial model. But their solutions are limited to the cases with
uniform initial conditions and homogeneous or continuous
heterogeneous soils. Although a vast body of literature for
analytical solutions for steady state vertical infiltration in
layered soils is available [e.g., Tagaki, 1960; Zaslavsky,
1964; Srinilta et al., 1969; Raats, 1983; Yeh, 1989; Warrick
and Yeh, 1990], analytical solutions for transient vertical
infiltration in layered soils are relatively scarce or do not
exist.

In this paper we develop analytical solutions to the linear-
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ized Richards equations for constant rate vertical infiltration
toward the water table in homogeneous soils and two-layer
soils. Steady state infiltration soil water pressure profiles are
used as initial conditions. Hydraulic behavior of the soils
subject to the constant infiltration rate during wetting and
drying processes is discussed. Although the solutions based
on the exponential functional relations may be very re-
stricted for any practical applications, they do serve as a
means for verifying many numerical models for unsaturated
flow, especially for infiltration in very dry, layered soils
where numerical models often suffer from convergence and
mass balance problems. In addition, the analytical solutions
may enhance our understanding of the infiltration process
under transient state in layered soils. As will be seen in the
calculated pressure profiles, even in the linear model the
effects of layering are quite interesting.

MATHEMATICAL FORMULATION

The Richards equation governing one-dimensional vertical
flow in unsaturated soils can be written as

|

where z, is the vertical coordinate, positive upward, K, is
the unsaturated hydraulic conductivity which is a function of
the pressure head ¢ (negative for unsaturated flow), 8 is the
moisture content, and ¢, denotes the time.

In this paper the dependence of the hydraulic conductivity
and the moisture content on the pressure head is assumed to
be described by the following constitutive relations:
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0=20,+(6,—0,)e (2b)
where K is the saturated hydraulic conductivity, 8, is the
residual moisture content, 6, is the saturated moisture
content, and « is a soil pore-size distribution parameter
representing the rate of reduction in hydraulic conductivity

or moisture content as ¢ becomes more negative. It is well
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soil behavior near saturation. They have been used, never-
theless, in many studies to linearize the governing equation
and to obtain an analytic solution. Also, in the following
analysis, hysteresis effect is neglected, that is, « is assumed
to be the same for wetting and drying cycles.

Using these constitutive relations in (1), a linearized
Richards equation can be obtained and expressed as

2K,

GK* a(os— Br) aK*
az2

a —
0Z4 K; I

(3)

A particular solution to this equation requires one initial
and two boundary conditions. In this study we examine the
case of constant flux at the soil surface, prescribed pressure
at the lower boundary, and an initial pressure distribution
corresponding to the steady state for a prescribed initial flux
at the surface and the prescribed pressure at the lower
boundary. The Laplace transformation technique is used for
the solution of (3) for two cases: (1) a homogeneous soil and
(2) a two-layer soil.

Homogeneous Soil

Consider one-dimensional vertical infiltration toward the
water table through a homogeneous soil. L, is the depth to
the water table so that z, = 0 at the water table and z, = L,
at the land surface; ¢4 = 0 is the prescribed pressure at the
water table (all the results in this study are also valid for any
other specified pressure  at the lower boundary); g% is the
initial flux at the soil surface which, along with ¢, deter-
mines the initial pressure distribution in the soil; and g% is
the prescribed flux at the soil surface for times greater than
0. For convenience, the following dimensionless parameters
are defined and used in the rest of this section:

Z=azy SOthat L=al, (4a)
K =K.K, (4b)
94 =a%K; qz=q¥/K, (4c)
aK ty
= (4d)
65 - ﬂ,
Equation (3) can then be written as
3’k 9K 9K s
—_——  —— ———
22 az ot )
The initial and boundary conditions are
K(z,0) =g, — (g4 —e"¥)e *=Ko(z)  (6a)
K0, r) = ¥ (65)
aK
—+K =qp (6¢)
9z
z=L

After taking the Laplace transform of (5) and denoting the
transform of K by K, we can write

3k Kk  _
;ET+;Z——SK+KA=0 (N

The corresponding boundary conditions (equations (6b)
and (6¢)) are

K(0) = e*¥9/s (8a)
oK
—+ K L (8b)
09z =L §

There is a very simple particular solution Ky(z)/s to this
special differential equation. The general solution of (7)
subjected to the boundary conditions given by (8a) and (854)
is

_ K
k= l)s(Z) +(qp — qa)e't " I7F(s) (9a)
where
1 sinh [z(s + )1
F(s) = -
$ §sinh [L(s + D21 + (s + D" cosh [L(s + D)
(9b)

The inversion of F(s) is achieved by use of the residue
theorem [Ozisik, 1980, p. 278] as the sum of residues of
e* F(s) at the poles of F(s). One simple pole is at s = 0, and
theresidue at s = 0 is e (¢ ~972 — ¢ ~(L*2/Z The other poles
are obtained by setting (s + 1) '? as a complex number. It is
easily seen that all the poles are at pure imaginary values of
(s + %)”2, which are expressed as iA. The values of A are
obtained as the positive roots (the negative roots are ignored
because of symmetry) of the characteristic equation

tan (AL} +2A =0 (10)
and the residue at A,, the nth root of (10), is obtained as

Residue at nth pole

4 sin (A,L) sin (A,2) exp [~(AZ + D]

- 1+ (L12) + 2A2L (1
Therefore the expression for K is obtained as
K=qgp—(gp—e®")e " —4(qp~ qa)

ol -, - i sin (A ,2) sin (A,,L)e'*j' (120)

1+ (L/2) +2A %L

n=1

The outflow at the water table (z = () at any time can be
derived as

oK
—+K

9,=K; az

=K,q5 - 4K,(g5 — q,)
z=0

o«
oLzt z
n

. -2
A, sin (A, L)e
1+ (L/2) +2A%L

(12b)

in which g, is the outflow in the units of length/time at time

t. The equation for KX is similar in nature to that obtained by
Druedier [1>75] [U1 4 UllUI] inual HUILUIC CUINCIL anu
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finite soil column thickness but is much simpler in appear-
ance. Expressions (12a) and (12b) were found to converge
very well for a variety of problems tested, but for some cases
it was found that the convergence at small times was very
slow. For such cases an alternative expression for X and g,
can be obtained by expanding F(s) as a power series and
disregarding the high negative powers of s (because s is very
large for small 7).

Layered Soil

Now, consider the case where the soil profile consists of
two distinct soil layers. The datum (i.e., z, = 0) is assumed
to be at the interface of the two layers. In the following
analysis, subscript 1 denotes the lower layer and 2 denotes

the top layer. Again, dimensionless parameters are defined
as
z=aZq for —Ly; =z, =<0 sothat L, = a Ly, (13a)
z=az, for0=z,<L,,sothat L, = a,L,, (13b)
Ky=K./K;y qa=q93/K;y  ap=qH Ky (13¢)
K:=Ka/Kg qu2=94/Ka  dg=q8Ka  (13d)
a1 Kt
p= sl (13e)
051 =0,
The governing equations are then written as
K, oK, oK, (140)
+—=— a
az>  az &t
’K, 9K, oK,
> t—=8— (14b)
¥4 az at
where
oK (05— 8,5)
- sI\U r (14¢)

a K (8, — 8,)

The initial and boundary conditions along with the inter-
face continuity of flux and pressure are described by the
following parameters: The initial condition in layer 1 is

Ki(z,0) = qa1 — (qa; — e*"¥)e 114D = K (2)
(15a)

The initial condition in layer 2, obtained by putting the
pressure in layer 2 at the interface equal to the pressure in
layer 1, is

Ky(z, 0) = qa2 — {942 —[q41 — (qa:
_ ealwo)e—L,]az/al}e-z — KZO(Z) (le)
The specified pressure at the lower boundary is

Kyl g, =¥ (15¢)
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Specified flux at the upper boundary is

K>
——+K; =4qm (15d)
8z
z=L,
Continuity of flux at the interface is
K, 3K,
K“—_"'K] =K:2_‘+K2 (158)
z z2=0" 92 z=0*
Equality of pressure at the interface is
In Kl ln Kz
= (15f)
a z=0" @2 z=0*

Taking the Laplace trarlsform of (14a) and (144) and denot-
ing the transforms by K; and K,, we obtain

'K, &K, _
_a_zz_+¥—SKl+Km:0 (16a)
3’K, ok, _
622 +‘;—BSK2+['3K20=0 (16b)
Boundary conditions are
_ eaul'o
[K]]z= -L, = (170)
oK,  _
7—2+ Kz] _im (17b)
z -1, s
with interface conditions
oK, _ Ko 0K,
—+K =212 (17¢)
3 ! K, la 2
4 1=0" sl 4 z2=0"
[K\);=0- = [LT(K3"*D], = q- (17d)

in which LT indicates Laplace transform. General solutions
of (16a) and (16b) can be obtained as

_ Ky i —22
K, =—+[A cosh (pz) + B sinh (pz)]e
s
(18a)

_ Kzo . -2/2
K, =——+[C cosh (gz) + D sinh (qz)]e
A
(18b)

1\ 172 1\ 12
p=<s+z) q=(Bs+z) (18¢)

and A, B, C, and D are constants which can be determined
from the boundary conditions described by (17a)-(17d).
After using conditions (17a)-(17¢), (18a) and (185) become

where

K sinh L,+z
Kl=_|0+Ae-z/2 [P( 1 )]

s sinh (pL,) (19a)
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K
KZ = —2‘0
A
, (as - gaz)e't> [ —sinh (gz) + 2q cosh (qz}]
2Bs? sinh (gL,)

Ksl
Ksl

{Ae~[sinh (pL) + 2p cosh (pL,)]

- [sinh (g(L, — z)) + 2q cosh (g(L, — 2))1}

- [4Bs sinh (pL,) sinh (qL,)] ™" (198)

The only unknown in (194) and (196), A, can be obtained
implicitly by using the interface condition (17d). However,
a general solution valid for any value of the ratio a,/a;,
cannot be obtained using this approach. The only case for
which a simple solution can be obtained is when a; = a5,
and therefore, in this study, only soils with the same a values
are considered. Although the effect of the contrast in « is
important [Yeh, 1989], the above assumption still enables us
to analyze the effect of discontinuous XK, on the moisture
movement.

Assuming the « values of the soils to be the same, (19a)
and (1954) can be reduced to

K

K, = o 4(gp ~ gape I (s) (20a)
_ K
Ry ===~ 8(qp ~ qape™ " ?Fyls)  (200)
S
where
sinh [p(L{ + 2)
Fy(s) = 1 Lol ] (20¢)
D,
Fuis) = —— 1ot G inh (pL
s(8) = D, K, sinh (gz)|sinh (pL)
+ 2p cosh (pL,)
KSZ
— sinh (pLy)
s
+ 2q sinh (pL,) cosh (qz)} (204)
with
s = s{—I[sinh (pL,) + 2p cosh (pL,)]
+[sinh (gL,) + 2q cosh (¢qL,)]
KSZ 2 . .
+ X (1 — 4g°) sinh (pL,) sinh (gL,)} (20¢e)
st

Equations (20a) and (20b) are inverted using the residue
theorem, as described for the homogeneous soil. It is obvi-
ous that both equations (204) and (205) have poles which
are the roots of the equation D, = 0. One simple pole is at
s = 0, and the other poles are obtained by putting p and g as
complex numbers. Again, it is seen that either p or g or both
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should be pure imaginary numbers. Three different cases are
possible.

Case A: Both p and q Imaginary
So Thatp = ixand q = ip
The poles are given by the following equation:
[sin (ALy) + 2A cos (AL )][sin (wLl,y) + 2 cos (mL,)]

KSZ
—(1+4p?
( /-L)K

sin (ALy) sin (uL,) =0 (21a)

51

where

12

,L=<;3A2+B4 l) (21b)
A trial procedure is used for obtaining the roots of (214) in
which a value of A is assumed (starting from A = 0 and using
very small increments), the value of w is obtained from
(215), and the expression on the left-hand side of (21a) is
evaluated. The process is repeated until there is a change of
sign in the value of the expression indicating the existence of
a pole in that particular range of A. The root was found to the
desired accuracy by using the half-interval search technique.
Getting the residues of F{(s) and F,(s) at all these poles
(considering only the positive values of A because of sym-
metry), we obtain the sum of residues for (204) and (2056) as

= sin [A,(L, +2)] exp [+ A1)

RA; = 22a
I n=1 D" ( )
RA; = E {sin (A, L)[sin (g (L, ~ 2))
n=1
+2p, cos (,(Ly = 2))] exp (=3 + A1)}
AD,[sin (n,Ly) + 2p, cos (L)1}~ (22b)
in which D, is given by
G+21d
D,=——/[A, sin (ALy) sin (uLy)
A g
+ Ay sin (AL ) cos (nl»)
+ A, cos (ALy) sin (ul,)
+ A, cos (AL ) cos (nL,)] (23a)
with
KsZ
Ass=4ﬂAn'E_+ )\"(L]+BL2) (23b)
5]
K:Z BAALZ 2 ﬂ n
Age = (1+4p;)+2A,p,L, - (2 + Ly)
Ksl 2’“"11 a ] 2#’71 ?
(23¢)
e by g, - X (23d)
cs Kyl ) My n%2 2
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A2
ad n

A(‘(' = _/J'n(z + LI) -

(2 + L) (23¢)

h
Case B: p Real and g Imaginary
SoThatp = Aand q = iu

This case is feasible only when B is more than 1 and p is
less than ((8 — 1)/48)"2. The poles are given by the following
equation:

[sinh (AL}) + 2A cosh (AL )][sin (nL,) +2u cos (ul,)]

K,
—(1+4u?
( u)K

sinh (AL,) sin (oly) =0 (24a)

sl

where

(24b)

B -1 12
= (T-BA2>

Getting the residues at all these poles, we obtain the sum of
residues for (204) and (2054) as

= sinh [A,(L, + 2)]) exp [-(4 = A D))

RB| =
n=1 D"
(25a)
RBy= > {sinh (AL )[sin (u,(L, — 2))
n=1
+ 24, €08 (u,(Ly — 2))] exp [-(5 — A D]}
-{D,, [sin (m,Ly) +2n, cos (u,Ly)]} " (25b)
in which D,, is given by
G-
D, = [B,; sinh (AL;) sin (nL,)
B,
+ B, sinh (AL}) cos (nL5)
+ B, cosh (AL,) sin (nL5)
+ B.. cosh (AL,) cos (ul,)] (26a)
with
Ks2
BS_Y=4B)\”K_+ A"(L|+ﬂL2) (26b)
sl
Ks2 ﬁA L A
Boo=—2 " (b 4+ 2A Ly — BA, (2+L,y)
s 2.u‘n Z#n
(26¢)
Kx?. Ll b 2 L(
B.=- — (1 +4 +2BA L, + 1+ —
cs K“ 2 ( I"n) B nt?2 7
(26d)
2
BA,
B..=u,2+Ly)- 2+ L,y (26¢€)

My

Case C: p Imaginary and q Real
SoThatp = iAand g = p

This case is feasible only when S is less than 1 and g is less
than (1 — B)/4)"2. The poles are given by the following
equation:

[sin (AL,) +2A cos (AL)][sinh (uL,) + 2 cosh (uL>)]

2 KsZ .
— (1 —4u*) sin (AL sinh(uel,)=0 (27a)
N I"/Kl [N ol b voR H
5
where
‘_ﬁ #2 172
A= (W‘——B— (2717)

Getting the residues at all these poles, we obtain the sum of
residues for (20a) and (2054) as

= sin [A (L, +2)] exp [-(} + A D)1l

RC| = D
n=1 n
(28a)
RCy = . {sin (A,L)[sinh (u (L, — 2))
n=1
+ 24, cosh (p,(Ly — 2)] exp [-(+ A 1]}
“{D, [sinh (L) + 2, cosh (u,L)]} ' (28b)
in which D, is given by
d+a)
D,= [Cys sin (AL)) sinh (uL,)
n*n
+ Cy. sin (AL}) cosh (unl,)
+ C.s cos (AL)) sinh (nL,)
+ C.. cos (AL,) cosh (pL,)] (29a)
with
Ks2
C”=4BA,,K——+ A Ly + BL,) (29b)
sl
Ko BAL
Cse = — 2 . 2(1—4#3)+2An“n1‘l
Kg 2p,
+—(2+Ly)  (29)
n
Ko Ly L
C., = K:l ~ - daplh) +2BA, — 1 - >
(294d)
BA;
Coo=—un,(2+L)+ 2+ Ly (2%¢)

n
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Fig. 1. Wetting profiles for homogeneous soil with o = 0.01/cm: (a) pressure and (b) moisture.

After getting the sum of residues for case A and the
relevant case B or C, we can add the residue at s = 0 and get
the expressions for X, and K, as

u«bu)e —(Ly+2) _ 4(qBI

Ki=qgp —(gp—¢
~gane'* " YRA | + (RB, or RC))] (30a)
Ky=gp — (95— gp + (g — e*¥e 11]e™

~ 4(gp — gare'" "P[RA, + (RB, or RC))] (30b)

The outflow at the water table (z = —L ) at any time is
given by
L+ L,
q:=qpg+4(gp — q.) exp —
- A, exp [—(; = AD1]
: 2 2B or0) D, (30¢)

n=1

ExAaMPLES AND DiscUSSION

The analytical expressions (12) and (30), along with the
constitutive relations (24) and (2b), are used in the following
two examples to compute the pressure head, moisture con-
tent, and specific discharge. These examples include infiltra-
tion toward the water table through hypothetical soils (ho-
mogeneous and two-layer soils). The resulting pressure head
profiles, moisture profiles, and outflow variations are dis-
cussed.

Example 1: Homogeneous Soil

In this example the thickness of the homogeneous soil is
taken to be 100 cm. The saturated hydraulic conductivity
value is assumed to be 1.0 cm/hr. Two « values (0.1/cm and

0.01/cm) are used to illustrate the effect of @ on the move-
ment of moisture. The saturated and residual water contents
of the soil, with a = 0.1, are taken as 0.40 and 0.06,
respectively; for o = 0.01 they are 0.45 and 0.2.

100 3020 15 10 8 5 hrs 3 1 t=0

80 90 100
T

70

60

z (cm)
50

40
T

30
T

20
T

o i 1 " [ L 1 " 1 A
-100 -80  —-60  -40 ~20 0
¥ em

Pressure profile during drainage for homogeneous soil with
a = 0.0l/cm.

Fig. 2.



100
A

z (em)
20 30 40 SO 60 70 80
] T BN ) T T

10

SRIVASTAVA AND YEH: ONE-DIMENSIONAL INFILTRATION IN SOILS
=0
t a 8 -
1
3
5 8 -
io
s 3T
3
N
30
ol
[}
75 & 100
hrs
oL
~
2r
o N
0.0

759

L
-5

-10

-30

=25 -20 -5
Y (em)
Wetting profiles for homogeneous soil with @ = 0.1/cm: (a) pressure and (b) moisture.
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Fig. 5. Outflow at the water table for soils of Figures 1 (solid
curve) and 3 (dashed curve).

Fig. 4. Pressure profile during drainage for homogeneous soil with
a = 0.l/cm.
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1 cm/h, and K;; = 10 cm/h: (a) wetting and ()

drainage.

Figure la shows the calculated pressure head profiles at
several times for a soil with « = 0.01/cm during a wetting
scenario. The initial pressure head profile is the steady state
infiltration profile at an infiltration rate equal to 0.1 cm/h.
Then, at ¢ greater than 0, the infiltration rate is increased to
0.9 cm/h. The corresponding moisture profiles are shown in
Figure 15. It can be seen that both the moisture profiles and
the pressure profiles are similar in shape, which is a result of
assuming exponential constitutive relations (2a4) and (2b).

The pressure head profiles for the same soil during a
drainage scenario, where the infiltration rate is suddenly
reduced from 0.9 to 0.1 cm/h, are shown in Figure 2.

The pressure and moisture profiles during the wetting
scenario in a soil with the same hydraulic properties as in
Figures 1 and 2, except that « = 0.1/cm, are presented in
Figures 3a and 3b, respectively. The pressure profile for the
drainage scenario is shown in Figure 4. Because of similar
shapes of the moisture and pressure profiles, only the
pressure profiles are shown in the rest of this section.

A comparison of these figures shows that in the soil with
smaller o the wetting and the drying fronts are dispersed
rapidly to a large distance, while in the soil with larger «
value the wetting and the drying fronts tend to be very sharp.
The relevant dimensionless parameter here for determining
the profile shape is the (inverse Peclet) number al.

Discharge as a function of time from the two soils to the
water table is plotted in Figure 5. As illustrated in the figure,
the increase in discharge from the soil with a small « tends to
be earlier, and the flow reaches a new steady state faster
than the one from the soil with a large « value.

200

125
T

75
1

25
—

Fig. 7. Pressure profile for the wetting case for a layered soil with

a=0.l/cm, K;; = 10 cm/h, and K, = 1 cm/h.
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Fig. 8. Pressure profiles for the wetting case for layered soil with a = 0.01/cm: (a) K;; = 1 cm/h and K> = 10 ¢cm/h

and (h)K,;, = 10 cm/h and K,, = 1 cm/h.

Example 2: Two-Layer Soil

Equations (30a) and (30b) are used in this example to
calculate the pressure head profile for the wetting and

i}
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Fig. 9. Specific discharge at the interface and at the water table for

Figures 6a (solid curve) and 7 (dashed curve).

drainage scenarios in a two-layered soil. The « of the two
layers are set to be 0.l1/cm, and the saturated hydraulic
conductivities of the lower and upper layers are equal to |
and 10 cm/h, respectively. The thickness of each layer is 100
cm. The saturated and residual water contents are taken as
0.40 and 0.06, respectively. The boundary and initial condi-
tions are the same as those in the homogeneous cases.
Figures 6a and 65 show the pressure profiles at different
times during the wetting and the drainage scenarios.

Figure 7 depicts the pressure profile at various times
during a wetting scenario in a two-layer soil where the top
layer has a saturated hydraulic conductivity value equal to |
cm/h and the bottom layer, 10 cm/h. The boundary and initial
conditions are the same as those in Figure 6a.

A comparison of the profiles of Figures 6a and 7 demon-
strates the effect of the position of a highly conductive layer
on the propagation of the wetting front. In Figures 64 and
6b, infiltration starts in the high conductive layer. Once the
wetting front reaches the top of the less conductive layer, the
pressure head at the interface increases rapidly so that
moisture is able to move through the less conductive layer at
the bottom. On the other hand, in Figure 7, infiltration starts
in the less conductive layer. Once the wetting front reaches
the interface with the high conductive layer, the amount of
moisture flow to that layer can be easily dissipated because
of the high conductivity of the layer. Thus the hydraulic
gradient remains approximately the same (i.e., unit gradi-
ent). The flow in the layer behaves as successive steady state
flows.

Wetting profiles in layered soils with the same conditions
as in Figures 6a and 7, except for a small « value (0.01/cm),
are presented in Figures 8a and 8b, respectively. Since the
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Fig. 10. Specific discharge at the interface and at the water table
for Figures 8a (solid curve) and 8b (dashed curve).

value of o is relatively small, the wetting fronts are more
dispersed than those in Figures 6a and 7.

Figure 9 shows the specific discharge values at the inter-
face and at the water table, corresponding to Figures 6a and
7. The solid curve denotes the discharge corresponding to
Figure 6a and the dashed curve denotes the discharge in
Figure 7. Comparing the solid and dashed curves, it can be
seen that, as expected, the time lag between the arrival of
flow at the interface and at the lower boundary is consider-
ably reduced in Figure 7 because of the higher conductivity
of the lower layer. Similar plots for the cases corresponding
to Figures 8a and 8b, where a = 0.01/cm, are shown in
Figure 10. A comparison of Figures 9 and 10 shows that the

SRIVASTAVA AND YEH: ONE-DIMENSIONAL INFILTRATION IN SOILS

time lag between the flow at the interface and the outflow is
considerably smaller for the smaller a.
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