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Anderson and Bowser [1986], hereafter referred to as AB, 

presented a very interesting paper on the study of the role of 
groundwater in delaying lake acidification in Wisconsin. By 
considering the input/output of hydrogen ion with respect to 
the aquifer, including nonconservative transport through the 
use of the retardation factor, the effect of a delay in the arrival 
of acid to the lake is demonstrated. A two-dimensional, finite 
difference flow and random walk transport model, neglecting 
dispersion, was used to simulate the migration of the acid 
water through the groundwater system. Also, the temporal 
changes in lake pH were examined by modeling the lake with 
both a lumped parameter (well-mixed) model and an equilibri- 
um chemistry model. Thus the lake model mixes inflow from 
the groundwater to the lake, precipitation on lake surface, and 
lake water, with the consideration of equilibrium chemical 
reactions. From their work they concluded that groundwater 
inflow can mitigate the effect of acid deposition on lake water- 
sheds, as well as the fact that the low ionic strength of the 
lakes was an important buffer. The scope of this comment is 
confined only to the issue of modeling the buffering capability 
of the aquifer. The purpose is to show that an alternate and 
simpler formulation for the groundwater model is also appro- 
priate for the case study of AB. 

Lumped parameter models for surface water systems have 
been widely used by engineers in the past few decades. Gelhat 
and Wilson [1974], hereafter referred to as GW, developed a 
lumped parameter model for groundwater systems to investi- 
gate the effect of deicing salt on groundwater quality. Since 
then the lumped parameter approach has been applied to only 
few groundwater related problems [e.g., U pdegraff and Gelhar, 
1977; Simonent, 1981]. Generally, the usefulness of this ap- 
proach has not been fully recognized in the field of ground- 
water hydrology. In this comment we demonstrate the utility 
of a lumped parameter approach for the aquifer-lake system in 
Wisconsin examined by AB. We also hope, through the exam- 
ple, to promote the use of such an approach for other appro- 
priate groundwater quality problems. 

As is pointed out by GW, a lumped parameter approach 
will be justified for cases of distributed contaminant sources, 
for cases of limited data on spatial variation of aquifer proper- 
ties, or for cases in which temporal variation in mean con- 
taminant concentration is of primary importance. In the study 
by AB, acid deposition is assumed a uniformly distributed 
contaminant source in space. Only average output con- 
centrations of hydrogen ion entering the lake are of concern 
while spatial variations within the groundwater system itself 
are ignored. Thus a lumped parameter approach is appropri- 
ate for this study. 
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In the following analysis, the groundwater quality model for 
the groundwater component of the system in Wisconsin is 
reformulated by a lumped parameter approach. Because AB 
only present their results in terms of lake concentrations, the 
two groundwater models cannot be directly compared. Thus 
the lumped parameter model is linked with a well-mixed lake 
model to compare the resulting water quality of the lake to 
the results of AB. Note that the scope of this analysis concerns 
only the formulation of the groundwater model. The respec- 
tive groundwater modeling methodologies can be compared 
without reperforming the equilibrium chemistry analysis in the 
lake, and thus that component of the previous work (by AB) is 
not considered here. 

Following the mass balance of GW, the groundwater bal- 
ance equation is expressed as 

dh 
n -- -- • -- q (1) 

dt 

where n is the porosity, h is the average thickness of the satu- 
rated zone, • is the recharge rate per unit area of the aquifer, 
and q is discharge from the aquifer. Using a linear reservoir 
assumption, q can be approximated as 

3T 
q = a(h -- h(O)) a- 

L 2 

where T is the transmissivity, L is the length of the aquifer, 
and h(0) is the initial average thickness of the saturated zone. 
For a steady state flow, h can be approximated by h(0) + e/a. 

The chemical balance for the aquifer system can be formu- 
lated as 

dhC a 
n t-•-t =C•'e--C"q-Sh (2} 

dC,, (3) S = (1 -- n)psKd dt 
where p• is the density of solid, Kd is the distribution coef- 
ficient, C,, is the average concentration of the aquifer, and C, is 
the concentration in recharge. 

Combining (1), (2), and (3), one can obtain a chemical bal- 
ance equation for the aquifer system: 

dCa 
+ AC,• = AC• (4) 

dt 

where A = e/nhR and the retardation factor R =(1 + (1 
- n)/np•Kd). The solution to (4) for a step input concentration 

is given 

C,(t) = C•(0) exp (-At) + C•(1 -exp {--At)) (5) 

where C•(0)is the initial aquifer concentration. 
Similarly, one can formulate the chemical mass balance for 
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TABLE 1. Values of the Parameters Used in the Lumped 
Parameter Model 

Parameter Value 

e 2.5 X 10 -3 ft/day 
n 0.3 
T 3,000 ft2/day 
L 8,350 ft 
h(0) 100 ft 
h 119 ft 
C,,(O) 10 -'•'• 
Cv 10 -4'6 
Cp 10-4'6 
C•(0) 10 -•'8 
q 17 ft2/day 
p 21.2 ft2/day 
V 104,500 ft 2 

One foot (ft) equals 30.48 cm; 1 ft 2 = 0.093 m 2. 

the lake system as 

dCt 
..+ BC• = I (6) 

dt 

where Ci is the concentration in the lake; B = ½ + q)/V; I -- 
(Cvp + Caq)/V; V is the volume of the lake; C v is the con- 
centration in precipitation, p is the precipitation rate per unit 
area; and C, is the concentration in the aquifer outflow (5). 
The kernel for (6) is simply an exponential decay, and so the 

solution to (6) with time-dependent groundwater con- 
centration (5) as well as acid rain as input can be obtained by 
the convolution 

C•(t) -- ;jI(z) exp (--B(t -- z))dz 
giving the solution for lake concentration in time as 

C,(t) = El1 --exp (--Bt)] + D[exp (--At) 

-- exp (--Bt)] + Ct(O) exp (--Bt) (7) 

where E = Cvp + C,q/VB; D = q(C,(O) -- C,)/[V(B - A)]; and 
C•(0) is the initial lake concentration. To demonstrate the ap- 
plicability of model (7) to the aquifer-lake system in Wiscon- 
sin, a steady state flow is assumed, and the parameters are 
given numerical values based on system 1 defined in the paper 
by AB. These values are summarized in Table 1. Those values 
which are not explicitly stated by Anderson and Bowser [1986] 
were obtained from them by personal communication. 

An analytical solution such as (7) will always have one ad- 
vantage over a numerical solution (AB) in that the system can 
be understood without performing a large number of simula- 
tions, as is necessary in the numerical case. To illustrate this 
advantage of the lumped parameter model, a first-order sensi- 
tivity analysis [Cornell, 1972] of the model was performed to 
study the effect of aquifer parameters on the lake response. 

The first-order sensitivity analysis allows for a consideration 
of the variation in the model output g(0x, 02, -.., 0,,), due to a 
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Fig. 1. La•c pH with time without groundwater input (solid curve), with groundwater input with R = 1 (dashed curve), 
R = 3 (dotted curve), and R = 20 (dashed-dotted curve). 
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Fig. 2. Coefficient of variation squared plotted against time for each model parameter' (a) C v and C•, (b) V, (c) q, (d) p, (e) 
h, (f) R, (g) ,, (h) l, (i) n, and (j) Ct and Ca(O). 
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perturbation in each individual parameter value 0i by 

Foa(0)l ]= Var [g(0)]e, = Var (8) 

where me, is the mean of the parameter 0 i. Using (8) the coef- 
ficient of variation, CV, is computed, considering all of the 
successive parameters. A plot of CV 2 for each parameter con- 
fidered against time shows the relative sensitivity of the model 
output to each parameter in time. 

Figure 1 x illustrates the model output for four cases: (1) the 
lake model'with no groundwater input, (2) the case of' ground- 
water input with the retardation factor equal to unity (i.e., no 
retardation), (3) the case of R -- 3, and finally, (4) the case of 
R = 20. The general behaviors predicted by the lumped pa- 
rameter model are in close agreement with those of AB. How- 
ever, discrepancy becomes significant at large times for R = 3. 
To obtain a similar result as the case of/it -- 3 in the work by 
AB, a value of R = 20 has to be used. The results of our 
sensitivity analysis (see following discussion) indicate minor 
model sensitivity to aquifer parameters including R, and sup- 
port our results. We postulate that one of the possible reasons 
for this discrepancy in lake concentrations when considering 
retardation may be errors due to discretization in the numeri- 
cal simulations by AB. 

Figure 2 shows the coefficient of variation squared versus 
time for each of the model parameters from a first-order sensi- 
tivity analysis, again using the numerical values ot' Table 1. 

We see that within the first 20 years of lake evolution, the 
system is most sensitive to lake volume, initial concentration 
from which the sensitivity decays with time, and recharge con- 
centration from which the sensitivity grows with time. Of sec- 
ondary significance are the rainfall and groundwater recharge 
volumes to the lake. The aquifer parameters R, h, L, e, and n 
are of minor significance. It should be stated that these results 
only apply to this particular point in parameter space. The 
sensitivities may be different, should different values for the 
parameters be considered. 

Through the lumped parameter analysis, the behavior of a 
lake-aquifer system in response to increased acid deposition is 
observed to be the same as in the analysis of AB. Their con- 
i:lusion that "even when chemical reactions are ignored, tran- 
sit through the groundwater system causes a delay in arrival 
of acid to the lake and slows the acidification process" thus 
can be restated here. However, in the previous analysis con- 
siderable computational effort must have been expended in 
obtaining numerical solutions, while the present analysis is 
accomplishable in a relatively short period of time with a 
simple hand calculator. Additionally, a quantitative analysis of 
the sensitivity of' lake response to the aquifer system can be 
easily obtained through a first-order analysis. Also, the results 
from numerical models may be subject to numerical errors 
due to discretization. 

Finally, we wish to stress that while the lumped parameter 
model with well-mixed assumption may not be appropriate 
for every problem of our interests, the analysis can be done 
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quickly on a hand calculator as an initial approach to com- 
plex problems. Through such simple initial analysis, important 
insight into the design and use of subsequently more complex 
models may result in some overall conservation of time in the 
modeling effort. 
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