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Abstract. A numerical model for the analysis of uncertainty propagation in flow through
unsaturated soils is developed. This model is based on a first-order Taylor series expansion of
the discretized Richards equation. Soil hydrologic properties (the saturated hydraulic
conductivity and the pore size distribution parameter) are assumed to be stochastic
processes in space. The surface boundary conditions can be considered as deterministic
variables in time or stochastic time series. Spectral analysis and Monte Carlo simulations
were used to verify this numerical model for flow under both steady and transient conditions.
The model is then used to examine the effect of uncertainty in boundary conditions and
the effect of heterogeneity on the pressure head and flux variance profiles at various times
for one-dimensional vertical flow cases. Dependence of pressure head variance on the flow
conditions (drying or wetting) is examined. On the basis of the analysis it is found that the
propagation of the head variance is similar to that of the concentration variance for solute
transport in saturated aquifers. The head variance is proportional to the mean pressure
gradient, and thus large head variances are associated with the wetting and the drying
front of a moisture pulse. The peak head variance is smaller at the wetting front than it is
at the drying front. This difference is attributed to the difference in the magnitude of
mean hydraulic gradient and should not necessarily be interpreted as a hysteresis effect. In
addition, it is shown how the variance of the flux of a moisture pulse increases with depth.

1. Introduction

Movement of water and pollutants in the vadose zone affects
the growth of vegetation and wildlife, the amount of recharge
and evapotranspiration, and overall water quality in every part
of the world. Spatial variability of hydraulic properties in the
vadose zone is one important factor that controls the migration
rate and path of water and pollutants. Because of our incom-
plete knowledge about the spatial distribution of hydraulic
properties, prediction of flow and transport processes in the
vadose zone always involves some degree of uncertainty. To
address the uncertainty, stochastic modeling of flow and solute
transport processes becomes necessary [Yeh, 1992, 1998].

In the past two decades, stochastic approaches have been
applied to analyze flow and solute transport in the vadose
zone. Dagan and Bresler [1983] presented a solution for the
problem of infiltration and redistribution in the unsaturated
zone, visualized as a collection of vertically homogeneous col-
umns with random saturated conductivity values. By employing
an analytical first-order approach, Yeh et al. [1985a, b, c] ana-
lyzed the effect of multidimensional variability in saturated
hydraulic conductivity and the pore size distribution parameter
on unsaturated flow. They considered steady infiltration in
unbounded domains under unit mean gradient conditions and
developed a moisture dependent anisotropy concept. In addi-
tion, they found the spatial variability of the soil water pressure
increases as soil becomes less saturated. Mantoglou and Gelhar

[1987a, b] extended the analysis by Yeh et al. [1985a, b, c] to
transient flow conditions in unbounded domains and found
significant hysteresis in pressure head variance, unsaturated
hydraulic conductivity, and moisture capacity. Although their
results are interesting, they are limited to asymptotic behaviors
because of limitations in the analytical method. Protopapas and
Bras [1990] developed a numerical method to investigate un-
certainty propagation with numerical models for flow and
transport in the unsaturated zone. Indelman et al. [1993] used
a perturbation analysis to investigate the unsaturated steady
state flow through bounded heterogeneous formations. Few
theoretical studies have focused on the effect of heterogeneity
on unsaturated flow under transient conditions in bounded
domains.

In this paper we develop a first-order stochastic model to
examine the effect of uncertainty in both boundary conditions
and heterogeneity on the propagation of pressure head and
flux variances under transient flow conditions.

2. Mathematical Formulations
Strictly speaking, water movement in the vadose zone is

directly associated with the movement of air. A rigorous anal-
ysis of water flow in the vadose zone should consider the flow
of water and air. However, in many cases the movement of air
can be ignored and Richards’ equation is generally used:
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where xi and xj are the spatial coordinates (i , j 5 1, 2, and 3),
x1 corresponds to the vertical direction (positive downward),
and Kij(h) is the hydraulic conductivity tensor which is a func-
tion of the soil-water pressure head, h . The pressure head is
positive if the porous medium is fully saturated and it is neg-
ative when the medium is unsaturated. The moisture capacity
term, C(h), represents the amount of change in moisture
content (u) per unit change in negative pressure when the
geological medium is partially saturated. It corresponds to the
slope of the water release curve or moisture-pressure head
relationship, u (h), of a given soil. When the soil is fully satu-
rated, the change in water storage due to change in the positive
pressure is denoted by the specific storage term, Ss, which is
related to the compressibility of the porous medium and water.
In (1), « is a saturation index of the porous medium: It is zero
when the medium is unsaturated and is equal to one if the
medium is fully saturated. Although this saturation index ap-
proach appears logical, it has seldom been tested. In our fol-
lowing analysis we will focus on the cases where the entire
porous media are under fully unsaturated conditions, and
therefore the effect of Ss is omitted.

2.1. First-Order Approximation of Head Variances

If Richards’ equation is approximated by a fully implicit
finite element scheme, it can be expressed in a matrix form as

P~hk, p!hk 5 Q~hk, p!hk21 1 f~hk, p , u! (2)

Throughout this paper, boldface capital letters indicate matri-
ces and boldface lowercase letters indicate vectors. In (2), hk is
the n-dimensional vector of the soil-water pressure head at the
time tk at each of the n nodes, where the subscript k denotes
the time level; p is the m z n–dimensional vector of the m
parameters used to define the soil hydraulic properties; u is the
boundary condition l-dimensional vector, where l is the num-
ber of boundary nodes (l 5 2 for the one-dimensional case);
P is the matrix associated with weighted unsaturated hydraulic
conductivity values and moisture capacity terms evaluated at
hk; Q is the matrix associated with the weighted moisture
capacity term evaluated at hk; and the vector f is related to the
boundary conditions and the gravity term. In this formulation
we apply a linear shape-function to the mixed form of Rich-
ards’ equation. That is, the moisture content is linearly
weighted over the element; the rate of change in u is related to
the product of the moisture capacity term and the rate of
change in h . As a result, the error in the mass balance is always
less than 1% and the solution converges rapidly [Bao, 1995].

Using the Vetter “calculus” [Dettinger and Wilson, 1981;
Vetter, 1970, 1971, 1973], expanding (1) in Taylor series around
the mean, retaining terms up to the first order, and taking the
expected value yield the approximate mean equation

P~^hk& , ^p&!^hk& 5 Q~^hk& , ^p&!^hk21& 1 f~^hk& , ^p& , ^u&!

(3)

where the expectation is denoted by angle brackets. Equation
(3) has the same form as (2), with the exception that the mean
values of the parameters are used to derive the ensemble mean
of the variables [Dettinger and Wilson, 1981].

Subtracting (3) from the Taylor expansion results in a per-
turbation equation

h*k 5 Fkh*k21 1 Gkp* 1 Oku* (4)
with

Ek 5 ~DhkP!~Inp^hk&! 1 P~DhkQ!~Inp^hk21&! 2 Dhkf

Fk 5 Ek
21@2Q#

(5)

Gk 5 Ek
21@2~DpP!~Inp^hk&! 1 ~DpQ!~Inp^hk21&! 1 Dpf#

Ok 5 Ek
21@~Duf!#

where primes denote the perturbations. In (5), DxA is the
derivative of the matrix A with respect to the transpose of the
vector x. In is an n z n–dimensional identity matrix, and the
operator asterisk signifies the Kronecker product [Dettinger
and Wilson, 1981]. Using a recursive formulation [Protopapas
and Bras, 1990; Townley and Wilson, 1985], (4) can be written as

h*k 5 Akh*0 1 Bkp* 1 Cku* (6)

with

Ak 5 FkAk21

Bk 5 FkBk21 1 Gk (7)

Ck 5 FkCk21 1 Ok

where h*0 represents the uncertainty in the initial condition.
Similarly, the approximate mean equation for unsaturated flow
under steady state conditions can be written as

S~^hs& , ^p&!^hs& 5 f~^hs& , ^p& , ^u&! (8)

where the matrix S is similar to the matrix P but without the
moisture capacity term. The perturbation equation is given as

h*s 5 G0p* 1 O0u* (9)

where

E0 5 ~DhsS!~Inphs! 1 S 2 Dhsf

G0 5 E0
21@2~DpS!~Inphs! 1 Dpf# (10)

O0 5 E0
21@~Duf!#

Substituting this expression in equation (6), the h*k perturba-
tion at any given time becomes

h*k 5 Bkp* 1 Cku* (11)

with

Bk 5 FkBk21 1 Gk
(12)

Ck 5 FkCk21 1 Ok

and

B0 5 G0 C0 5 O0 (13)

By using (13), the relationship between the head covariance
matrix Rhh and the parameter and boundary condition covari-
ance matrices, Rpp and Ruu, respectively, can be defined as

Rhh 5 ^h*kh*k
T& 5 BkRppBk

T 1 CkRuuCk
T (14)

if the soil parameters and the boundary conditions are uncor-
related. The cross-covariance matrices between the head, pa-
rameters, and the boundary conditions are given by

Rhp 5 ^h*kp*T& 5 Bk^p*p*T& 1 Ck^u*p*T&

5 BkRpp (15)

Rph 5 Rhp
T
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and

Rhu 5 ^h*ku*T& 5 Gk^p*u*T& 1 Ok^u*p*T&

5 OkRuu (16)

Ruh 5 Rhu
T

In the one-dimensional case, Ruu is a two-by-two matrix with
the variance of boundary condition on the diagonal and zero
on the off-diagonal terms.

For mathematical simplicity and for comparing with the
results by Mantoglou and Gelhar [1987a, b], we chose Gardner’s
[1958] model for describing the unsaturated hydraulic proper-
ties of soils in this study, although the presented numerical
approach is not limited to this model. The model is given as

log K~h! 5 log Ks 1 ah

u ~h! 5 ~u s 2 u r!pexp ~ah! 1 u r (17)

C~h! 5 ~u s 2 u r!pa exp ~ah!

where log denotes the natural logarithm, Ks is the saturated
hydraulic conductivity, a is the pore-size distribution parame-
ter, us is the saturated water content, and ur is the residual
water content. For convenience, we will use f to denote log Ks.
If we consider a , f , ur, and us as stochastic processes, then

Rpp 5 3
Rff Rfa Rfus Rfur

Raf Raa Raus Raur

Rusf Rusa Rusus Rusur

Rurf Rura Rurus Rurur

4 (18)

where Rxy is the cross-covariance matrix of x and y . If x and y
are uncorrelated, Rxy is zero. Otherwise, it must be specified.

2.2. First-Order Approximation of Flux Variance

The finite element formulation of Darcy’s equation for the
unsaturated flow yields

q 5 t~hk, p , u! (19)

where the vector t depends on the pressure head gradient and
on the weighted unsaturated hydraulic conductivity values. The
Taylor series expansion up to the first order of (19) gives

q 5 t~^hk& , ^p& , ^u&! 1 ~Dhkt!~hk 2 ^hk&! 1 ~Dpt!~p 2 ^p&!

1 ~Dut!~u 2 ^u&! (20)

The expected value of the flux is given by

^q& 5 t~^hk& , ^p& , ^u&! (21)

Therefore the perturbation equation is

q* 5 Mhkh*k 1 Mpp* 1 Muu* (22)

with

Mhk 5 Dhkt , Mpk 5 Dpt , Muk 5 Dut (23)

or

q* 5 Vkp* 1 Zku* (24)

with

Vk 5 MhkBk 1 Mpk
(25)

Zk 5 MhkCk 1 Muk

Using this formula, the approximate autocovariance matrix for
the flux is given as

Rqq 5 ^q*q*T& 5 MhkRhhMhk

T 1 MhkRhpMp
T 1 MhkRhuMu

T

1 MpRphMhk

T 1 MpRppMp
T 1 MuRuhMhk

T 1 MuRuuMu
T

(26)

3. Results and Discussion
The above formulations are valid for multidimensional flow

in unsaturated porous media but our numerical examples are
limited to one-dimension vertical infiltration problems (per-
fectly stratified soil with uniform boundary conditions). In spite
of this limitation the results of this preliminary analysis will
enhance our understanding of the general behavior of flow in
the heterogeneous vadose zone.

3.1. Comparison With Monte Carlo Simulation Results

The first-order model was first tested against the results of
Monte Carlo simulations for flow in a one-dimensional, verti-
cal soil profile under transient wetting and drying conditions.
In this test the total length of the one-dimensional simulation
domain was 5000 cm and was divided into 250 elements, each
with a length of 20 cm. Equation (17) was used to represent the
constitute relation of the unsaturated hydraulic property for
each element. Soil parameters f , a , us, and ur for each ele-
ment were considered as second-order stationary Gaussian
processes with the means of Ks equal to 10 cm/min, of a equal
to 0.1 cm21, and of us and ur equal to 0.4 and 0.06, respec-
tively. The variances of f , a , us and ur were 0.1, 1027 cm22,
0.001, and 0.001, respectively, and the corresponding coeffi-
cients of variation were 3.1 3 1022, 3.1 3 1023, 7.9 3 1022,
and 5.3 3 1022, respectively. Cross correlation between differ-
ent hydraulic parameters was assumed negligible as partially
suggested by field data [Russo and Bouton, 1992] and by the
fact that the cross correlation between parameters reduces the
head variance [Yeh, 1989]. Exponential covariance functions
with an integral scale of 160 cm were used to describe the
spatial structure of f , a , us, and ur. Flux boundary conditions
were assigned at the top of the soil profile for the wetting and
drying cases, and a constant head, hn 5 0 cm (representing the
water table) was specified as the bottom boundary condition.
Mean and variance of the initial head profile for the wetting
case were assigned equal to those from the steady state solu-
tion for an infiltration event of a mean flux (qa) of 0.002
cm/min with a variance (sq

2) equal to 1027 cm2/min2. In the
drying case, means and variances of the initial head profile
were generated with a prescribed mean flux (qa 5 0.006
cm/min) and variances (sq

2 5 1027 cm2/min2). A sudden
change in the mean flux was then imposed on the top boundary
condition. The flux was increased from the initial mean value
qa 5 0.002 cm/min to qb 5 0.006 cm/min for the wetting
case. It was decreased from qa 5 0.006 cm/min to qb 5
0.002 cm/min for the drying case. The variances associated
with these prescribed fluxes were kept the same as the one in
the initial steady state case.

For the Monte Carlo simulations, each element was assigned
a value of f , a , us, and ur, using a random field generator [Yeh,
1989] with the specified means and covariance functions. These
250 elements, with different hydraulic parameters, represent a
possible heterogeneous soil profile. For each heterogeneous
soil profile the fluxes at the top, qa and qb, were randomly
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produced from a normal distribution with the previously de-
fined means and variances. The bottom boundary condition
was always kept as a constant head, hn 5 0 cm. Our mass
conservative, finite element, unsaturated flow model, (2), was
then used to derive the corresponding pressure head profiles at
different times. Two thousand Monte Carlo simulations were
conducted and the resultant head distributions were then av-
eraged to obtain the mean head profile and its variance distri-
bution at various times.

Figure 1a shows the mean head distributions during wetting
derived from both the Monte Carlo simulations (dotted lines)
and from the first-order numerical model (equation (3), solid
lines) at various times (0, 2, 10, 40, 60, 100, 140, 180, and 220
min). Similarly, Figure 2a depicts the mean head distributions
for the drying scenario. In this figure (as well as in Figures 4
and 5) depths are normalized with respect to the correlation
scale ls. The variances associated with these mean head dis-
tributions are illustrated in Figures 1b and 2b for the wetting
and the drying case, respectively. Since the numerical solution
of the mean flow equation is first-order, some differences be-
tween the results from the Monte Carlo simulations and the
numerical solutions are expected.

To explain the differences, consider the exact mean flow
equation



 z F ^K~h!&S ^h&

 z 2 1D G 2 ^C~h!&
^h&

t

1 K 

 z FK9~h!S h9

 z D G 2 C9~h!
h9

t
L 5 0 (27)

The first two terms in (27) represent the effect of the mean
unsaturated hydraulic conductivity, moisture capacity term,

and mean head; the last two terms inside the expected value
represent the effect of products of perturbations. Similarly, the
exact mean flux boundary condition at the top can be written as

^q& 5 2^K~h!&S ^h&

 z 2 1D 1 KK9~h!S h9

 z D L (28)

The boundary condition at the water table is ^h& and h9 5 0.
Under steady state flow conditions with the given mean flux,
the exact governing mean flow equation is



 z F^K~h!&S ^h&

 z 2 1DG 1 K 

 z FK9~h!S h9

 z DG L 50 (29)

Notice that this mean flow equation is different from the equa-
tion employed in the first-order analysis, which is



 z F ^K~h!&S h
 z 2 1D G 5 0 (30)

In (30) the product of perturbations in (29) is omitted, and the
head solution, h , in (30) is therefore expected to be different
from the mean head, ^h& . Similarly, our first-order numerical
model for transient flow also neglects the two terms inside the
expectation brackets in (27). Furthermore, we must also point
it out that our numerical analysis assumes that ^K(h)& and
^C(h)& in (27) can be approximated by (17) using mean values
of f and a. Because of these simplifications, the mean head
distributions from the first-order approach are expected to be
different from the ensemble mean head profiles derived from
the Monte Carlo simulation. The difference in head variances
between the Monte Carlo simulation and our numerical ap-
proach is also anticipated. These discrepancies, however, will
be small if the perturbation is small (i.e., soils with mild het-

Figure 1. (a) The mean pressure head distributions and (b) the associated pressure head variances from the
Monte Carlo simulations (dotted lines) and the first-order numerical model (solid lines) for the wetting case.

FERRANTE AND YEH: HEAD AND FLUX VARIABILITY1474



erogeneity in unsaturated hydraulic conductivity). Notice that
our first-order approximation is identical to the analytical spec-
tral approach used by Yeh et al. [1985a, b] and Mantoglou and
Gelhar [1987a, b], except that the analytical approach assumes
that mean head is given.

We want to emphasize that the goal of this study is not to
develop exact mathematical solutions to the stochastic Rich-
ards equation but to investigate the effect of heterogeneity on
transient flow in unsaturated soils. Development of an exact
solution to the stochastic flow equation is intractable even
under the saturated flow conditions. For these reasons our test
does not seek exact agreement in the values of mean and
variance of pressure head between our approximation and the
Monte Carlo solution. We rather focus on the general corre-
spondence between the two solutions.

3.2. Behavior of Head Variance in Wetting and Drying
Cases

Figures 1b and 2b show the propagation of head variances
for the wetting and drying cases, respectively. In both cases the
initial (t 5 0 min) and final (t 5 220 min) steady state head
distributions are uniform for most of the depth (unit gradient
condition), except near the water table. As expected, the head
variances at t 5 0 min and t 5 220 min depend on the mean
head value, in excellent agreement with the results from the
spectral analysis assuming unit mean gradient [Yeh et al.,
1985a, b; Yeh, 1989] if the variance of the boundary flux is
omitted.

Transition from one steady state to the other takes place
only at the wetting and drying fronts (Figure 1b). In a wetting
scenario the head variances at locations where the wetting
front has passed conform to final steady state head variance

(t 5 220 min), while the head variances at locations preceding
the front remain equal to the steady state head variance at t 5
0. Transient effects on the head variability are then exhibited
at the wetting front location. Notice that during the early times
(t , 20 min) head variances associated with the mean wetting
front are less than the initial head variance. In addition, the
minimum head variance approximately coincides with the in-
flection point of the mean wetting front, where the mean pres-
sure head gradient is the greatest. Such behaviors are attrib-
uted to the effect of the prescribed flux boundary condition
used in the simulation. After t . 20 min, the head variance at
the inflection point of the wetting front gradually increases to
its maximum. As the mean wetting front moves further down-
ward, this head variance becomes even greater than the initial
steady state head variance (t 5 0). However, it rapidly de-
creases to the steady state solution once the front reaches the
capillary fringe, where the conditioning effect of the water
table boundary condition takes place.

In contrast to the wetting case, the head variances at the
drying front are always greater than the initial steady state
head variances (Figure 2b). The maximum value of the head
variance follows the inflection point of the mean drying front
where the mean pressure gradient is the greatest. It grows
rapidly at the very early time and then decreases as the front
moves downward. Once the front reaches the capillary fringe,
the maximum head variance decreases toward the final steady
state value. Figures 1b and 2b also show that the head variance
at the drying front is greater than that at the wetting front.

The findings described above apply to both our first-order
numerical model and the Monte Carlo simulation results.
Therefore we conclude that our first-order approximate nu-

Figure 2. (a) The mean pressure head distributions and (b) the associated pressure head variances from the
Monte Carlo simulations (dotted lines) and the first-order numerical model (solid lines) for the drying case.
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merical model is able to capture the general behavior of the
“exact” solution to the stochastic differential equation. The
following discussion will then focus on the behavior derived
from our first-order approximation.

3.3. Impacts of Uncertainties of Input Parameters on Head
Variances

Since our numerical uncertainty model is linear with respect
to parameter variances and soil parameters are uncorrelated,
analysis of the individual contribution of the uncertainties in f ,
a , the flux at the land surface (q), and us and ur to the head
variance becomes possible. To do so, the soil properties, initial
conditions and boundary conditions were kept the same as the
previous wetting case but qb was reduced to qa after 40 min.
Thus a moisture pulse propagating toward the water table is
created. Figure 3a shows the propagation of the corresponding
mean pressure head pulse along the soil profile. As expected,
as the pulse moves toward the water table, the peak of the
mean pressure pulse decreases; the wetting and drying limbs of
the pulse broaden because of the diffusive nature of the pro-
cess. Notice that the drying front is always steeper than the
wetting front. This is attributed to the fact that the drying front
lags behind the wetting front and has less time for diffusion
than the wetting front.

Propagation of the total pressure head variance (due to
uncertainty in f , a , q , us, and ur) associated with the mean
head pulse as a function of time is shown in Figure 3b. In
general, two peak head variances were observed: one associ-
ated with the wetting limb and the other with the drying limb.
This result is similar to the concentration variance distribution

of a mean concentration plume [Sudicky, 1986]. At early times
(t # 20 min) the head variance associated with the wetting
front is small because of the boundary. Since then, the head
variance grows and becomes greater than the initial head vari-
ance. The peak variance of the wetting front also grows as the
front moves toward the water table, but it starts to diminish
when the front reaches the capillary fringe. The peak variance
of the drying front, in contrast to that of the mean wetting limb,
continuously decreases as the pulse moves toward the water
table. In addition, the peak variance associated with the drying
limb is always larger than that with the wetting limb. This result
is different from the finding by Mantoglou and Gelhar [1987b]
that the head variance is greater during the wetting than the
drying.

Figure 3c shows the effect of variability in f on the head
variance propagation. Impacts from the variability in a , q , and
us (or ur) are illustrated in Figures 3d, 3e, and 3f, respectively.
Note that us and ur are assumed to be independent from each
other and the effects of uncertainty in us and that in ur on head
variance are essentially identical. According to Figures 3c and
3f, influences on the head variances caused by variability in the
parameters, f , us, or ur, are similar. They all are related to the
magnitude of the mean pressure head gradient regardless of
wetting or drying. Consequently, the profile of the head vari-
ance due to the variability in f shows two peaks: one associated
with the maximum pressure head gradient at the wetting limb
and the other at the drying limb. At locations where the mean
pressure gradient is equal to zero (at the peak, in front of the
wetting front, and behind the drying front), the head variance

Figure 3. (a) The mean pressure head distributions, (b) the associated total pressure head variances, and the
components due to the variability in (c) log Ks, (d) a, (e) q , and (f) us or ur.
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due to the variability in f matches that of the steady state flow
and is independent of the mean head. Similar behavior is also
observed in Figure 3f, but the steady state head variance is zero
(since the steady-state equation does not include us and ur).
Also, the impact of the variability in f on the head variance is
found to be greater during drying than during wetting. On the
other hand, the effects of the uncertainties in us and ur on the
peak head variances in the drying and the wetting limbs are
almost identical.

The distribution of the head variance due to uncertainties in
a and q (Figures 3d and 3e) resembles that of the mean
pressure head pulse (Figure 3a). The contributions from the
variability in a and q to the head variance are found to be
related to the magnitude of the mean pressure head. In addi-
tion, they are bounded by the steady state results; that is, the
variances in head at the peak of the mean pressure pulse
(where the pressure gradient is zero) conform to the steady
state solution for a unit mean hydraulic gradient as pointed out
by Mantoglou and Gelhar [1987b].

Our simulation results also show that the peak of total head
variance depends on the initial mean pressure head. That is, a
given flux will produce greater mean pressure head gradients at
both wetting and drying limbs of the pressure pulse in the
initially dry soil than in the wet soil. Since the contributions
from the variabilities in f , us, and ur to the peak head variance
explicitly depend upon the mean pressure head gradient, they
thus increase with the dryness of the initial condition. On the
other hand, the impacts of a and q on the peak head variance
are proportional to the mean head value at the location where
the maximum head gradient exists. The mean head value of the
pressure pulse in the initially dry soil is larger than that in the
wet soil. As a result, influences of a and q on the peak total
variance increase if the soil is dry initially.

Possible hysteresis in head variance during transient infiltra-
tion as reported by Mantoglou and Gelhar [1987b] is also in-
vestigated for this case. Mantoglou and Gelhar [1987b] exam-
ined unsaturated infiltration into perfectly stratified random
porous media under transient conditions. They found that the
head variance was larger during wetting than during drying,
and they attributed the difference to the hysteresis effect in the
head variance. On the other hand, the results of our Monte
Carlo simulation and the first-order numerical model showed
that the head variance was smaller during wetting than during
drying. More importantly, the difference in head variance dur-
ing wetting and drying appears to be related to the difference
in mean pressure gradient. Note that the flow field in their
analysis is identical to ours (i.e., a one-dimensional flow phe-
nomenon) because of uniform mean flow and perfect stratifi-
cation assumption. Such possible dependence of peak head
variance on the magnitude (i.e., absolute value) of pressure
gradient leads us to ponder the hysteresis interpretation of
Mantoglou and Gelhar [1987b].

Hysteresis has generally been observed in unsaturated hy-
draulic conductivity and moisture release data measured in the
laboratory [Klute, 1986]. Most of these measurements of un-
saturated hydraulic conductivity are determined by using the
unit-gradient approach under steady state conditions. This
unit-gradient approach implies that the hysteresis effect in the
unsaturated hydraulic conductivity is independent of the hy-
draulic gradient. That is, if values of the mean hydraulic gra-
dient and pressure during wetting and drying are the same,
differences in hydraulic conductivity during wetting and drying
can then be interpreted as a hysteresis effect. For the same

token, the hysteretic behavior in head variances must be inde-
pendent of the hydraulic gradient.

To explore the dependence of the head variance on the
mean hydraulic gradient in this study, head variances are ex-
amined at every location of the moisture pulses in Figure 3 at
two time levels (t 5 80 and 120 min). These head variances
are plotted in Figure 4 as a function of the corresponding mean
hydraulic gradient ( J 5 d^h&/dz 2 1). The long dashed line
denotes head variances along the moisture pulse at t 5 80 min
(see Figure 3), whereas the dotted-dashed line represents
those at t 5 120 min. To facilitate a comparison with the
result of Mantoglou and Gelhar [1987b], the effect of the vari-
ance in the flux boundary condition is not considered in the
case. As illustrated in this figure, the head variance is directly
related to the mean hydraulic gradient in a complex fashion,
and it partially depends on the mean pressure head. Notice
that for both moisture pluses, two head variances (the open
and solid diamonds) exist when the mean hydraulic gradient
equals the unity ( J 5 21). The open diamond represents the
variance of head at the peak of the moisture pulse, while the
solid diamond denotes the variances in front of and behind the
moisture pulse, corresponding to that of the initial steady state
condition. Because the soil was initially dry and then wetted by
the moisture pulse, the open diamond has a lower value in
head variance than the solid one. As one moves away from the
peak of the moisture pulse towards the wetting front, the
magnitude of mean hydraulic gradient increases and reaches a
maximum at the inflection point of the wetting front (i.e., from
J 5 21.00 to J 2 1.012). The head variance first slightly
decreases and increases accordingly to a maximum. After this
maximum at the wetting front, the head variance decreases
because of the decrease in the mean hydraulic gradient. Finally
it reaches the value of the head variance corresponding to the
initial steady-state condition (the solid diamond). The behav-
ior of head variances along the drying limb of the moisture
pulse is also influenced by the mean hydraulic gradient and can
be similarly depicted. However, the magnitude of mean hy-
draulic gradient is less than 1 at the drying limb since the
pressure head gradient is positive.

To isolate the effect of the mean pressure head on the
variance in Figure 4, the head variances corresponding to the
same mean pressure head values along the wetting and drying

Figure 4. Dependence of sh
2 on mean hydraulic gradient and

on mean pressure head, for the pressure head pulse of Figure
3 at two different times.
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limbs of the two moisture pulses are denoted using the same
symbol. For example, the two solid circles for the pulse at t 5
80 min represent the head variances at two locations in the
wetting and drying fronts where the mean pressure head values
are 276.0 cm. At this mean pressure head, the head variance
(15.5 cm2) at the wetting limb is found smaller than that (26.1
cm2) at the drying limb. Therefore the difference in the head
variances at this mean pressure head can then be attributed
solely to the difference in the mean hydraulic gradients (i.e.,
21.011 and 20.979). This is also true for the other head
variances. The analysis of the Monte Carlo simulation for the
case in Figure 3 also confirms the general dependence of the
head variance on J and mean pressure head.

An explicit relationship between the head variances and
both the mean hydraulic gradient and the mean head value is
difficult to derive from this numerical result. Nevertheless, our
qualitative finding suggests that the greater variance during
drying than wetting may be related to the mean hydraulic
gradient. As a result, hysteresis in head variance suggested by
Mantoglou and Gelhar [1987b] may not exist during transient
unsaturated flow in the hypothetical soil with perfect stratifi-
cation. In fact, results of stochastic analysis of steady state
infiltration in heterogeneous soils by Yeh et al. [1985a, b, c] also
suggest nonhysteresis behavior in head variances and effective
hydraulic conductivity. The nonhysteresis behavior may be at-
tributed to the fact that the hysteresis in hydraulic properties of
the soil at the local scale is ignored in the analysis.

3.4. Flux Variance

The means and variances of the flux associated with the
pulse at different time levels, evaluated using (21) and (26), are

illustrated in Figure 5. Since the flow is one-dimensional and
steady and the mean flux is constant over the depth before and
behind the pulse, the flux variances at these locations are equal
to the flux variance specified at the boundary. Over the mois-
ture pulse the distribution of the flux variance has two peaks
similar to the head variance distribution in Figure 3. The peak
variances in flux at the wetting and drying fronts are found to
be related to the gradient of the mean flux. However, they grow
as the fronts move toward the water table and without being
affected by the water table boundary condition. This growth in
the flux variance may suggest that our recharge estimate in
thick stratified vadose zones is subject to greater uncertainty
due to heterogeneity. Although evapotranspiration is not con-
sidered in our study, it may further amplify the uncertainty in
the estimate of recharge. More importantly, this result is dif-
ferent from those derived from analysis that assumes that the
vadose zone consists of a bundle of vertical stream tubes [Da-
gan and Bresler, 1983]. The variance of flux based on the ver-
tical stream tube model will remain the same as that specified
at the top boundary as the moisture pulse propagates down-
ward. Our approach however indicates that uncertainty in flux
increases as the moisture pulse moves downward since it en-
counters more heterogeneity. This result seems logical and
indicates that the vertical stream tube model may not be suit-
able for most field situations where vertical stratification is
significant.

4. Conclusions
A first-order numerical model for the stochastic analysis of

transient flow through unsaturated soils is developed. This

Figure 5. (a) The mean flux distributions and (b) the associated flux variances for the pressure head pulse
of Figure 3.
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model can be used to investigate the effect of heterogeneity on
flow under realistic conditions, such as bounded domains, un-
certainty in boundary and initial conditions, and nonstationary
processes. More importantly, it allows us to examine many
cases excluded by previously developed analytical methods
[e.g., Mantoglou and Gelhar, 1987a, b]. The model has been
verified against the results of Monte Carlo simulations. Over-
all, the evolution of the head and flux variances derived from
the numerical model is in good agreement with that obtained
from the Monte Carlo simulations.

On the basis of our analysis, we found that the overall be-
havior of the head variances produced by the variability in f ,
us, and ur is different from that produced by the variability in
a and in the prescribed flux q . Similar to the propagation of
the concentration variance in saturated aquifers, the head and
flux variances are strongly correlated to the mean hydraulic
gradient at the inflection point of the wetting or drying front.
Our finding does not support the hysteresis behavior in head
variance reported by Mantoglou and Gelhar [1987b]. This find-
ing, more importantly, leads us to question the mechanisms of
hysteresis in effective properties for large-scale vadose zones.

We found that while the mean flux remains the same
throughout the entire vadose zone, the variance of flux grows
with depth towards the water table. This result implies that our
estimate of the recharge in a thick stratified vadose zone may
be greatly uncertain.

Finally, we want to point out that our analysis is based on a
one-dimensional model. The variances in head and flux are
expected to be greater than those derived from a three-
dimensional model. Nevertheless, the general relationship be-
tween the input and output variances in a one-dimensional
model is similar to those in a three-dimensional analysis [Yeh
et al., 1985a, b, c].

Although the Gardner’s model, (17), for unsaturated hy-
draulic properties may not be representative for all soils, no
universal unsaturated hydraulic property model exists. Previ-
ous studies [Yeh et al., 1985a, b, c; Hopman et al., 1988; Unlu et
al., 1990] have shown that the general behavior of flow ob-
served in the vadose zone is adequately described by Gardner’s
model. Results of a recent analysis by Zhang et al. [1998] seem
to validate this hypothesis.
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