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Abstract

A two-dimensional numerical model is developed for the simulation of water flow and chemical transport through
variably saturated porous media. The nonlinear flow equation is solved using the Galerkin finite-element technique with
either the Picard or the Newton iteration scheme. A continuous velocity field is obtained by separate application of the
Galerkin technique to the Darcy’s equation. A two-site adsorption-desorption model with a first-order loss term is used to
describe the chemical behavior of the reactive solute. The advective part of the transport equation is solved with one-step
backward particle tracking while the dispersive part is solved by the regular Galerkin finite-element technique. A precondi-
tioned conjugate gradient-like method is used for the iterative solution of the systems of linear simultaneous equations to save
on computer memory and execution time. The model is applied to a few flow and transport problems, and the numerical
results are compared with observed and analytic values. The model is found to duplicate the analytic and observed values

quite well, even near very sharp fronts.

Introduction

Until the early 1970s, studies of flow and transport
through unsaturated soils were limited to the upper one
meter of the vadose zone and were done primarily with
agricultural purposes in mind. In the last 20 years, because
of the important role of thé vadose zone.in ground-water
pollution problems, hydrologists have become increasingly
interested in studies involving unsaturated flow and trans-
port problems on scales of meters and tens of meters. At
such large scales, the hydrological properties of the geologic
media exhibit a large degree of spatial variation. For investi-
gating and predicting contaminant migration in large-scale
geologic media, mathematical modeling is generally
required. Moreover, analytic solutions to such problems are
almost impossible to obtain, and numerical modeling
becomes the method of choice for analyzing and predicting
the movement of contaminants through the subsurface
media (Anderson, 1979). The mathematical models are
generally based on the governing equation of flow under
variably saturated conditions (Richards’ equation) and the
classic convection-dispersion equation. One of the difficul-
ties in predicting the movement of contaminants lies in our
lack of ability to solve these equations accurately and effi-
ciently for general cases.

The dependence of hydraulic properties of unsaturated
media on the pressure or degree of saturation makes the
Richards equation nonlinear. The degree of nonlinearity of
the equation, in turn, depends on the extent of the nonlinear-

* Associate Professor, and Graduate Students, respectively,
Department of Hydrology and Water Resources, The University
of Arizona, Tucson, Anrona 85721.

Received July 1992, revised January 1993, accepted February
1993.

634

ity in hydraulic properties and pressure relationships of
media. In general, numerical methods combined with some
iterative schemes are required to obtain the solution to this
equation. Since hydraulic properties and pressure relation-
ships of some porous media are highly nonlinear, difficulties
in obtaining the convergence of the numencal solution and
serious mass balance problems have often been encountered
(e.g., Celia et al., 1990).

The solution of the convection-dispersion equation
requires the knowledge of the velocity distribution through-
out the solution domain. Many difficulties exist in calculat-
ing the velocity field from the pressure distribution obtained
by numerical models. As is customary for finite-element
flow simulations, the nodal heads are treated as unknowns
and assumed to vary linearly in triangular elements and
bilinearly in rectangular elements. This results in a constant
specific discharge value within ¢ach element and conse-
quently in a discontinuity in the nodal values of the specific
discharge. Such a discontinuous discharge field may lead to
undesirable numerical solutions of the convection-disper-
sion equation (c.g., Goode, 1990). Although the mixed
finite-clement approach (e.g., Chiang et al., 1989) can alle-
viate this problem, it produces a large system of equations to
be solved and thus increases the computational effort. In
addition, for highly heterogencous aguifers, the matnx
equations are in general poorly conditioned (Allen et al.,
1992).

Another difficulty in solving the convection-dispersion
equation can be attributed 10 the change in the nature of the
equation from parabolic to almost hyperbolic as the advec-
tive transport becomes prominent relative to the dispersive
transport (manifested by a large Peclet number). While a
parabolic partial differential equation 15 amenable 1o the
commonly used numerical methods like finite difference or
finite elements, numerical solution to a hyperbolic equation
by these methods generally introduces numerical dispersion
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or oscillation near the sharp front. This problem can be
tackled, to some extent, by a properly chosen grid size and
time step at the expense of increased computer time and
memory requirements (Daus et al., 1985). Vanous alterna-
tive approaches have been suggested in the past to reduce the
numerical error near the sharp fronts. These include the
implicit diffusive finite-difference method (Yanosik and
MecCracken, 1979), upstream weighted finite-element meth-
od (Huyakorn and Nilkuha, 1979), method of characteris-
tics (Konikow and Bredehoeft, 1978), modified method of
characteristics (Chiang et al., 1989), Laplace transform-
Galerkin technique (Sudicky, 1989), and the zoomable hid-
den mesh approach (Yeh, 1990). The method of characteris-
 tics (also called forward particle tracking) and the modified
method of characteristics (backward particle tracking)
have been combined successfully by some investigators
(Neuman, 1984; and Cady, 1991). This scheme has been
shown to handle the sharp fronts very well but is computa-
tionally intensive.

Most of the schemes described above perform well
under saturated flow conditions, but have not been rigor-
ously tested for unsaturated conditions. Also, there are very
few numenical codes for simulation of two-dimensional flow
and transport of reactive chemicals in vaniably saturated
media. In this paper, we combine several previously devel-
oped ideas and construct an efficient, two-dimensional
finite-element model, which alleviates the difficulties dis-
cussed above. The model was applied to several scenarios
where either analytical or observed data are available for
verification purposes. In addition, analytical solutions of the
velocity field in a two-dimensional unsaturated medium
with exponential hydraulic properties were derived and used
to verify the accuracy of the numerical model. We believe the
model will enhance our ability of predicting flow and fate
and transport of contaminants in the field, where hydraulic
and geochemical properties of the media are inherently
heterogeneous.

Governing Equations

Equation of Flow in Variably Saturated Media
The following equation is taken as the equation govern-

ing two-dimensional flow of water in porous media (Bear,

1979)

— (&, :T, W+ Baxe) =

dy
dt

(C + BsSs) — Qs in {} (1)
where x; and x; are the spatial coordinates (i, j = 1, 2) with xa
being the vertical upward direction for vertical flow; K;j is
the hydraulic conductivity tensor which under unsaturated
conditions is a function of moisture content or pressure; ¥ is
the pressure head; C is the specific moisture capacity defined
as dé/dyr where & 15 the volumetric moisture content; S is
the index for gravity and is zero for horizontal flow and one
for vertical flow; B, is the index for saturation and is zero in
the unsaturated zone (§ < 0) and one in the saturated zone
(¢ = 0); S, is the specific storage defined as the volume of

water released from storage per unit volume of saturated soil
due to a unit decrease in the pressure head; t is the time; gsis
the source/sink term (positive for source) which represents
the volume of water added/removed per unit time to/ from a
unit volume of soil; and (0 is the solution domain. Einstein’s
summation convention (over repeated index) has been used
in the above equation and throughout this paper.

Equations for Transport and
Fate of Contaminants

The complex process of dispersion, adsorption, and
decay of chemicals in porous media flow is not very well
understood at the present time, and various models have
been proposed to describe the interaction between solute,
pore water, and the solid matrix in a porous medium. These
maodels include a simple linear isotherm equilibrium model
(Rubin, 1983), a linear reversible adsorption (one-site)
model (Lindstrom and Boersma, 1973), a two-site adsorption-
desorption model (Selim et al., 1976; Cameron and Klute,
1977), mobile-immobile zone physical partitioning model
(Deans, 1963; Coats and Smith, 1964; van Genuchten and
Wierenga, 1976), mobile-immobile zone with 1on exchange
(Krupp et al., 1972), and the two-site model with a first-
order loss (Lassey, 1988). It has been shown (Nkedi-Kizza et
al., 1984) that although the physical partitioning model with
mobile and immobile zones and the two-site chemical parti-
tioning model are completely different concepts, they result
in the same mathematical equation. Also, Lassey’s (1988)
model is quite general and encompasses, as special cases, the
physical and chemical partitioning models. In this paper,
therefore, the two-site model with first-order loss was used
to represent the complex process of chemical transforma-
tion of the solute.

By using the formulation of Cameron and Klute (1977)
and adding a first-order loss term (Lassey, 1988), the equa-
tion governing the transport of a chemically reactive solute
15

d dc dc dc  d(psc*)
— D —)—q—=0—+
axi Ix; 9x; gt at
+ fk: puci* + qslc — c5) in 0} (2a)
With
d(ppc* d(pnrce*
[: G % (2b)

where c is the solute concentration in the liquid (in units of
mass per unit volume); c* is the adsorbed phase concentra-
tion (in units of mass of adsorbed chemical per unit mass of
porous media); ¢i* is the kinetic fraction of the adsorbed
chemical, and c.* (= ki fc/ps) is the equilibrium fraction;
ki is the forward (adsorption) rate constant, kz 1s the back-
ward (desorption) rate constant, and k; is the equilibrium
constant; f is the loss coefficient for the selective first-order
removal; q; are the specific discharge components; ps is the
bulk density; s is the injected / pumped fluid volume per unit
aquifer volume; and ¢, is the solute concentration in q;. Dyjis
the hydrodynamic dispersion tensor computed on the basis
of the specific discharge and is given by:
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qi q;j

D = (aL — ar) + arqdi + Do (2¢)
in which a is the longitudinal dispersivity; ar is the trans-
verse dispersivity; g = (giqi)"” and is the magnitude of the
specific discharge; &;; is the Kronecker delta (&; = 1,1f1=)
and 0 otherwise); and Dy is the apparent molecular
diffusion.

Numerical Scheme

Equation (1) is solved using the Galerkin technique by
representing the pressure at any point (x;, X2) in the domain
at any instant t as:

(X, X2, £) = Ni(xs, x2) 9" (1) (3)

where N; are the shape functions associated with node I; and
W' is the value of ¥ at node I with the range of 1 being from 1
to NN (NN is the total number of nodes). Linear shape
functions for triangular elements and bilinear shape func-
tions for the rectangular and quadrilateral elements are used
in this study. In a similar way the hydraulic conductivity
tensor and the moisture capacity term are represented as

[(K]= 3'*7r*[1{]] (4a)
and C=NiC (4b)

where [K] and C are the conductivity tensor and the mois-
ture capacity at any point in the domain at any time, and
[K]' and C' are the nodal values. Strictly speaking, equa-
tions (4a) and (4b) are mconsistent with equation (3) because
of the nonlinear relations between the pressure head and the
unsaturated hydraulic conductivity, and relations between
the pressure head and the moisture capacity term. Errors
due to this inconsistent approach may, however, be resolved
by using small elements. After these values of ¥, K, and C
‘are put in equation (1), a residual R is obtained as

d d
R.* — :?_};_ (HL K-tjj- E' {HJ “’I + .ﬂgﬁi})
i )

d(Ns ')
— (NLC* + B:S4) Lilo: P qs (5)
ot
Now, using the Galerkin scheme, NN equations are
obtained as follows:

Jy RyNid2 =0 for 1 =11to NN (6)
These equations can be more conveniently and concisely
written in the matrix form, after making use of the diver-
gence theorem and noting that the shape function for any
node is nonzero only in elements containing that node, as:

d
[A] twi + [B] e {w} +{F}—{Qi=0 (7)

where {1} is the vector of the nodal values of the pressure
head; [A] is the conductance matrix; [B] is the storage
matrix; {F} is the gravity vector; and {Q} is the flux vector.
These matrices and vectors are given by the following
equations:
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- dN; dN;
Au=Ze [y = (N.Ki* E) dA  (89)

L

By = Zc [, (NLC" + B:Ss) NiN;dA (8b)
IN

Fi =3 [,. — (NuK2")dA (8¢)
gXi

Qi =S ([, — NigsdA + [ NigvdB)  (8d)

in which the integrals are performed over all elements con-
taining node 1 as one of their nodes, and the boundary
integral in equation (8d) is evaluated along the boundaries of
elements which lie along the boundary of the domain with
specified normal flux g. A® represents the area of the
element and B its boundary. It should be noted that the
storage matrix B as given by equation (8b) is in consistent
form: i.e., all nodes within an element influence one another.
An alternative formulation of this matrix can be obtained by
lumping the off-diagonal terms onto the main diagonal and
is known as the lumped formulation. In addition to these
two formulations, we also implemented a lumped formula-
tion in which the weights for off-diagonal terms are set to
zero and the weights for diagonal terms are set to the
fractional area of the element associated with the node (1.e.,
1/3 for tniangular and 1/4 for rectangular elements). This
scheme is similar to a finite-difference approach and is
consistent with a trapezoidal scheme generally accepted for
computing the mass balance. This is the scheme we used in
the examples presented later in the paper.

Equation (7) is solved by using a time-weighting
scheme which results in the following equation

(8]

k+172 e L 3 E]. k+12
=) =(¢-nm+ =)

W + (P — QP ©)

where the superscript denotes the time level; and £ 15 the
time-weighting factor and varies between zero (for explicit
scheme) and one (for fully implicit scheme).

The set of algebraic equations are, then, solved using a
preconditioned conjugate gradient-like method (Reid, 1971;
Young, 1971). The incomplete LU decomposition of the
coefficient matrix is used as a preconditioner to enhance the
convergence properties of the method. Even with zero level
of fill-in during the decomposition process, the convergence
of conjugate gradient iteration was found to be adequate.
Details of the procedure are given in Yeh and Srivastava
(1990). Only the nonzero matrix elements need to be stored,
thus saving a huge amount of computer memory as com-
pared to the direct banded matrix solvers. Either a Picard or
Newton iteration scheme is used to accomplish the conver-
gence of the solution of the nonlinear algebraic equations.
Automatic time stepping is used to ensure the convergence
of the nonlinear iterations necessary due to the dependence
of the coefficient matrices [equations (8)] on the pressure
head. The convergence of iterations is checked by compar-
ing the maximum head difference between two successive
iterations with a prescribed tolerance. If the number of
iterations exceeds a specified maximum or if the solution 1s

(e1a1+



found to be diverging, the time step is reduced by a specified
factor. On the other hand, if the convergence 1s very rapid,
the time step is automatically increased.

To avoid the loss of one order of accuracy due to the
numerical differentiation in approximating the specific dis-
charge field, a finite-element type procedure (Segol, 1976;
Yeh, 1981) was employed, in which the velocities are
obtained from the computed head field by applying the
Galerkin technique separately to the flux equation

g
qi = —Kj o (¥ + Bgxa) (10)
2

]

Using the same type of shape functions, Ni, for the velocity
components, (10) cay be wnitten as

[Agd{gi}*"" + [Bai]* " fy*"' + {Cui}*"' =0

fori=1,2 (11)
in which:
Aw = Ze [,e NiN;dA (12a)
. 9N,
Bou = Zc [, Ni(NLK5") — dA (12b)
JX;
Car = B Ze [,e Ni(NLKH)dA . (120)

Though this procedure involves solution of NN sumul-
taneous equations for each velocity component, the coeffi-
cient matrix is time invariant and has to be inverted only
once during the entire simulation.”

Transport equations (2) are solved using one-step
reverse particle tracking for the advective transport (called
MMOC for modified method of charactenstics) and the
regular Galerkin FEM for the dispersive transport. In the
MMOC, the partial time derivative in equation (2a) is con-
verted to a total derivative along the characteristic lines by
using

De _ &
Dt ot

Qi de
ﬂl:I + k;} a:-;,-

(13)

The finite-difference form of the total denvauve can be
written as

= - [].-:1.
IDn At )
in which ¢,* is the concentration at the time level k at the
corresponding spatial position along the characteristic line.
After applying the Galerkin technique to the dispersive part
of the equation, the concentration at a time step is given by

[E[At] - ( SRS SELL kB)[B-_—]]hlﬂ (1) =

1 + ks £AL At
(0 -dk P
(—a-81ad e (B.])  fc}+
I + ki K412 g ky 2 IBJ:‘] L k+12
o B e+ o et e

RS)

in which:

Ay = Z¢ fh‘ Di; fﬂ ahls (16a)
ax; dx;

By = E. [.. 6NiN;dA (16b)

Biu = X, _Ll,_- (1 — 1) ppkaNiN;dA (16¢)

Qa = Ze (f,c Niqs(c — cs) dA =[5 Niga dB) (16d)

The boundary integral in (16d) is performed over bound-
aries with the specified dispersive flux ges.

The location for the determination of ¢," is obtained by
fourth-order Runge-Kutta integration of the equation:

dxi qdi

= (17)
dt (/] (I + k]]
resulting in the following expressions:
At(g" ")
dx;' = - (18a)

5 @), (1 + k3)

AL(GE ) anis2
dx? = — —— (18b)
(E }x.**d.;r.i'fz{] + kl]

AUGE ")y, e aniir2
dxi’ = — k+1/2 - (18c)
(8" " )x e axiya (1 + k)

At(qi*")x e dxs?
dxi' = — —— — (18d)
(0" " )giedn (1 T Ks3)

and
x* = x; + (1/6) (dx;' + 2dx® + 2dx” + dx") (18¢)

During the back-tracking algorithm, the particle con-
centration is determined by using linear shape functions and
concentrations at the nodes of the element. If the particle
crosses an inflow boundary, it is assigned the concentration
at the boundary. At no-flow boundaries, the particle is
reflected back into the domain. After solving for the iquid
phase concentration from equation (15), the adsorbed phase
concentration 15 obtamned from

1;Irlu:*l —
| — &) ki 6At k1O At
[1 —kz{l—ﬂ-ﬁt]ﬁt“'i'[ b r:h:+‘f e G
k] o
I + k2 £AL
.. .. (19a)
k38
and et = b (19b)
Py

If the time-weighting factor £ is taken to be 0, we obtain an
explicit scheme which, along with the lumping of the mass
matrix, results in direct evaluation of nodal concentration at
time level (k + 1) without solving a set of linear simultanéous
equations.
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Fig. 1. Breakthrough curves for different values of K.

Applications
1-D Saturated Flow and Solute Transport

The numerical scheme described above is first used to
simulate the transport of reactive chemicals in a soil column
under saturated conditions. Cameron and Kiute (1977)
present an analytic solution to this problem assuming a
prescribed concentration (o) boundary condition at the
upstream end and zero concentration at infinity. The non-
dimensional parameters used in this analysis are defined as

vt vL
T=— B= —
L 4D
Lk, Lk
Ki=—— K: = Ki: = ks
v v

where: t is time, L is the length of the column, v is the seepage
velocity, D is the hydraulic dispersion coefficient, and B is
the Brenner number. :

The breakthrough curve (plots of dimensionless time
versus dimensionless concentration, ¢/cg, at the outlet) for
B =10, K: =0, and K; =0, and different values of K, are

.00

TS

feled)
.00 025 050 0.7 1.00

o

Fig. 2. Longitudinal concentration profiles at different times for
K, =2
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shown in Figure 1. The parameters used for the numerical
simulations are: seepage velocity 1 cm/ hr, column length 10
cm, longitudinal dispersivity 0.25 cm, mesh size 0.1 cm, and
time step 0.1 hour. The mesh Peclet number is kept at 0.4,
and the Courant number is equal to | to eliminate the
interpolation errors. The time-weighting factor in this simu-
lation is 1.0, resulting in the fully implicit scheme. As seen
from this figure, the numerical results are in perfect agree-
ment with the analytical solution. Figure 2 shows the longi-
tudinal concentration profiles at different times for K; = 2.0.
To observe the effect of the Courant number, simulations
for K; = 1.0, K2=0.1, and K;= 4.0 are performed for three
different Courant numbers, 0.5, 1.0, and 1.5. Courant
numbers different from 1.0 introduced no noticeable inter-
polation errors in the back-tracking calculations. The model
is then applied to simulate the behavior of the chemical
Atrazine, with B=20, K, =0.48, K.=0.18, and K;=3.52,
in a soil column of Honeywood silt loam. Breakthrough
data are reported by Elrick et al. (1966). The comparison of
simulated versus observed data is shown in Figure 3. The
parameters used for the numerical simulation are: seepage
velocity 0.64 cm/hr, column length 15 ¢m, longitudinal
dispersivity 0.1875 cm, saturated conductivity 0.3283
cm/hr, porosity 0.513, bulk density 1.42 gm/cm’, forward
rate constant 0.02048 per hr, backward rate constant 0.0763
per hr, and the equilibnum constant 3.52. The mesh size 1S
kept at 0.1 cm and the time step is 0.7 hr. It is seen that the
MMOC, using the parameters obtained by fitting the ana-
lytic solution to the observed data (Cameron and Klute,
1977), duplicates the observed breakthrough data very well.

2-D Solute Transport in a Steady Uniform Flow
Field :
The purpose of this application is to test the validity of
the model for the case where both longitudinal and trans-
verse dispersion exist. Bruch and Street (1967) developed an
exact analytical solution for the advection-dispersion equa-
tion in a 2-D semi-infinite medium of finite width given a
finite-line source. We compare the solution of MMOC with

100 . - - v T . - !

0TS -

1] 1 1
-] 50 75 it 25 158
T

0.00

Fig. 3. Breakthrough curves for Atrazine in Honeywood silty

loam column.
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Fig. 4. Concentration distribution at various vertical sections.

the analytic solution for the hypothetical case of a vertical
soil profile with a uniform flow field and the following
boundary conditions:

clce =1 Oecm=x=1525¢cm,z= 300 cm
c/ca=10 152.5 cm < x =< 300.0 cm, z = 300 cm
c/eca =10 z=0cm

Acjax =0 x = 0cm, x = 300 cm

The parameters to the transport equation are: longitudinal
dispersivity e = 10 cm, transverse dispersivity ot = 3 cm,
velocity = 63.45 cm/day. Square finite elements of 5 cm
width are specified (thus the Peclet number Pe = 1), and the
time-step At = 0.01 days is chosen such that the Courant
number Co < 1. As shown in Figure 4, the numerical
solution is in excellent agreement with the analytical solu-
tion. The solute profiles practically coincide, and the differ-
ences between the two solutions are less than 1% anywhere
in the domain.

2-D Saturated Flow and Transport from a River
Towards a Well

To ascertain the accuracy of the particle tracking algo-
rithm in a nonuniform flow field, horizontal two-dimen-
sional flow and transport from a river towards a well is
simulated. The velocity field and the location of concentra-
tion front starting from the river can be analytically
obtained using a sharp interface (i.e., without considering
dispersion) approach (Muskat, 1937). At any time, the con-
centration front obtained from the numerical simulations
should then correspond to the location of particles at that
time as given by the analytic solution. However, because of
the highly nonuniform nature of the velocity field, the
Courant number is very different from 1.0, thus introducing
some interpolation error during back-tracking. This causes
artificial (numerical) dispersion of the concentration front,
and therefore the simulated front is dispersed about the
mean position, even when the dispersivity is set to zero in the
simulation. To compare the analytic and simulated resuits,
the simulated concentration front is assumed to be located

at a concentration equal to half of that in the river (¢/co =
0.5).

The numerical simulation is performed using a domain
of 60 m > 40 m with the well being at a distance of 10 m from
the river boundary. The analytical solution is for an infinite
domain, but we truncate the river at 30 m on either side of
the well to achieve a reasonable computational time without
sacrificing much accuracy. The grid size is chosenas0.2min |
both x and y directions, and a total of 60,000 elements with
60,401 nodes are obtained. The pumping rate at the well is
kept at 5 m’/ hr and the time step is varied from 0.01 hrto0.1
hr. Figure 5 shows the position of the concentration front at
different times obtained from the numerical simulation and
the corresponding analytic solution. As mentioned earker,
the numerical concentration front is the location of the 50%
contour, and a narrow band around this line represents the
complete numerical concentration distribution. This band is
not shown in the figure but is about 2 m in thickness at t =40
hours. A very good agreement between the model results
and the theoretical values is obtained. Slight differences near
the edges of the plot are thought to be an artifact of the
numerical model resulting from truncating the infinite nver
boundary to 30 m on either side of the well and putting a
no-flow boundary there.

1-D Transient Flow and Transport in Unsaturated
Media

Few analytical solutions are available for flow and
solute transport in unsaturated porous media. Wilson and
Gelhar (1984) presented an approximate analytical solution
to compute one-dimensional infiltration of solutes into
unsaturated soils both under steady-state and transient flow
conditions. We simulate their problem with our model
based on a two-dimensional finite-element grid of 135 ele-
ments in the z direction and 10 elements in the x direction.
The side length of the square elements is 1 cm.

15

Fig. 5. Location of concentration front at different times.
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The flow problem in the analytical solution of Wilson
and Gelhar is given by a water-content-based form of
Richards’ equation with &, (saturation) and 6 prescribed at
bottom and top, respectively, of a soil column. The relation-
ships for 8(y) and K(¢) used in this model, which solves the
pressure-based form of Richards’ equation, are equivalent
to those for ¥ (f) and K(f) given in Wilson and Gelhar:

fo=0.2

6; = 0.38

#(6) = —1377 exp(—10.5 6) <037

W(f) =—1.8E + 07 exp(—35.8 6) 8> 0.37

K(8) = 1.944E — 06 exp(35.8 6)

D(6) = 0.0281 exp(25.3 6) 6 < 0.36

D(6) = 259.0 + 991E + 04(6 — 0.36) 0.36 <6 = 0.37
D(6) = 1250 8> 037

However, a translation of these properties from §(8), K(8),
and D(8) to 8(xr), K(i), and C(4) are required and involves
some approximations. For the steady-state solution with
our model, a pressure head of — 17 cm is prescribed at the
bottom of the soil column, and a constant flux of g = 0.48
cm/day is assigned as a boundary condition at the top of the
column. The pressure head at the bottom of the column is
chosen to best-fit the soil moisture profile obtained by our
model with the soil moisture profile given in Wilson and
Gelhar. In the transient flow problem presented below, the
uniform initial head corresponding to the initial water con-
tent of 8=10.2 in Wilson and Gelhar is used. A1t >0, a head
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equivalent to 8; = 0.38 is assigned to the top of the column,
and a head equivalent to 6, is the boundary condition at the
bottom of the column.

For the solute transport example, the background con-
centration of the solute 15 assumed zero. The boundary
conditions to the solutions by Wilson and Gelhar are given
as a unit solute pulse (pulse length equal to 1 cm) at the top
of the soil column at t = 0 days, and zero concentration at
infinite depth. In our numerical simulation, a constant non-
zero concentration boundary condition is prescribed at the
top for the time necessary to infiltrate 1 cm of water. Then
the boundary is set to zero concentration. Molecular diffu-
sion is neglected and the hydrodynamic dispersivity is set (o
1.013 cm as in Wilson and Gelhar. The grid-Peclet number is
1/1.013== 1, and the Courant number is much less than 1 at
any time (At = 0.01 days).

As shown in Figure 6a, the steady-state soil moisture
profiles of the analytical and numencal solutions are identi-
cal with the exception of the conditions near the water table.
Some discrepancies exist between the numerical and the
analytical solution of the solute transport equation (Figure
6b). The numerical solution produces a higher peak concen-
tration than the approximate analytical solution, and the
plume resulting from the numerical model moves slightly
faster than that from the analytical solution, but the spread-
ings of the solute pulse are nearly identical. The numerical
solution exhibits a mass surplus of 4% at all times after the
injection, a condition that can be adjusted by slightly
decreasing the initial solute application time.

Comparison of numerical and analytical moisture and



100

75k

S0k

y femyj

23

s AT
p— [ T
0.0 - - - - -
0.0 25 Jo 15 10.0 125 150
X o)

Fig. 7. Contours of the vertical component of specific discharge.

concentration profiles for the transient case are presented in
Figures 6¢ and 6d. As illustrated in Figure 6c, the wetting
profiles calculated by our model lag behind the analytical
ones. As a result, the solute plumes derived from the analyt-
cal solution are slightly ahead of the ones from our model.
The mass balance errors in these cases are less than 0.5%.
These discrepancies can probably be attributed to the fact
that the analytical solution is an approximation and that soil
unsaturated properties used in our model are not exactly
identical to those used by Wilson and Gelhar. However, the
results are, in general, satisfactory.

2-D Steady Flow and Transient Transport in
Unsaturated Media

To test our model for a more complex flow field, the
model is applied to simulate solute transport in a hypotheti-
cal soil profile under steady flow toward the water table
from a strip source where the analytical solution for the flow
can be derived. In our simulation, steady-state flow and
velocity fields are obtained and then a constant concentra-
tion boundary condition is imposed on the strip source to
simulate the transport of solute under the unsaturated con-
ditions. Exponential relationships are assumed between
pressure and conductivity, and pressure and moisture con-
tent of the hypothetical soil [Appendix, equation (Al)].
The soil hydraulic parameters used are: K: = 1 cm/hr,
a = 0.01/cm, 8; = 0.44, 8, = 0.067, ar = ar = 0.0 cm,
Do= 0.0 cm’/ hr, and the initial conditions are assumed to be
hydrostatic.

The domain is divided into 2500 elements with 2601
nodes with Ax = 0.3 em and Az = 0.2 cm. The time-step
length is changed from an initial value of 0.1 hr to a maxi-
mum of 0.2 hr, and 55 time steps are required to simulate the
solute distribution to 10 hours. The CPU time required for
this problem is 209 seconds on an IBM RISC 6000/550
workstation, out of which about half is for the steady-state
flow solution. Exact analytical solutions for the velocity
components in x and z directions are derived (Appendix A)
to check the accuracy of the numerical solution. Figure 7
shows the contours of the vertical velocity component from
the analytic results, for the steady-state solution, and from

the numerical calculation. Clearly, the numenical results are
in excellent agreement with the analytic solutions. A sumilar
agreement is obtained for the horizontal velocity compo-
nent. This indicates that, for this problem, the inconsistency
of assuming both the head and the velocity components as
linear in equation (10) does not adversely affect the numeri-
cal results. In addition, these results confirm the explanation
for the discrepancies between the numerical model and the
approximate analytical solutions given in the previous one-
dimensional flow case.

Simulated solute distribution, resulting from pure con-
vection, at 10 hours, is depicted in Figure 8. The simulated
distribution appears reasonable and there is no numerical
oscillation. However, numerical dispersion of about 0.5 cm
in either side of the front is observed. Unfortunately, no
analytic solutions for solute transport for the specified flow
field are available and thus, we cannot verify the accuracy of
the simulated results. Our results show that the MMOC
calculations produce a mass balance error of less than 5%.

Simulation of Moisture Movement in a Sandbox

To further test the ability of our model, the model is
used to simulate the moisture movement from a point source
through alternating layers of medium and coarse sand in a
laboratory sandbox (Mathieu, 1988). The unsaturated
hydraulic properties of the materials are represented by the
van Genuchten model. That is, the moisture content-suction
relationship (water release curve) of the matenials is given by

O(¥) = (6: — 0 [1 + (a)’] " + 6 (20)

Then the hydraulic conductivity-suction relationship is
described by

(1= @) ' [1 + (@)1 ™)’
(1 + (@®)'1™”

where K, is the saturated hydraulic conductivity, and ¢ is
the suction. 8; and #, are moisture content at saturation,
and residual moisture content, respectively. « and n are
parameters controlling the curvature of the relationships
and m = 1 — 1/n. The parameters for the two sands are:
K; = 3.26 m/hr, 6: = 0.44, §, = 0.067, « = 9.13 m ", and
n = 4.27 for the medium sand; and Ks = 4.05 m/hr,
8, = 0.446, 6, =0.047,a = 14.6 m"', and n = 10.16 for the
coarse sand (Yeh and Harvey, 1990). A uniform pressure
head of — [0 m is used as the initial conditions for both the
experiment and the numerical model, and a flux of 1.62
m/hr is applied near the top corner. The sandbox, 150 cm
wide and 16 cm deep. is discretized into 4832 elements with
5033 nodes with mesh size varying from 0.5 cm to 1.0 cm.
The time-step size is changed from an initial value of 0.001 hr
to a maximum value of 0.05 hr. Figures 9a and b show the
simulated moisture distribution and a photograph of the
observed wetting front. Although no measurements of
moisture content or soil water tension are available for a
quantitative comparison, an excellent qualitative agreement
is clearly seen. This resemblance demonstrates that the
finite-clement models are capable of representing sharp
material interfaces. This can be attributed to the fact that the

K(¥) = Ks (21
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Fig. 8. Simulated concentration distribution at 10 hours.

interfacial boundary conditions are incorporated during the
assemblage of the element matrices. Finite-difference mod-
els, on the other hand, tend to smooth the front near these
interfaces. In addition, this comparison confirms the ability
of our model to tackle highly nonlinear unsaturated flow
under very dry conditions.

Summary and Discussion

A two-dimensional finite-element model for the simu-
lation of the transport of a chemically reactive solute is
developed by combining the recent developments in the
fields of numerical methods and chemical reaction of sol-
vents, The accuracy of this model is tested against analytic
solutions and observed values for both saturated and unsat-
urated flow and transport problems. Some observations
based upon the various simulation runs with our model are
summarized below: (I) The adaptive time stepping and
lumped scheme ensure convergence of the solution to the
unsaturated flow problem. Small time-step sizes will speed
up the convergence at each time step. This is due to the fact
that under these conditions, the coefficient matrix becomes
diagonally dominant and radius of convergence is greatly
expanded (Fletcher, 1988). The trade-off, however, is that it
will take a large number of time steps to finish the simulation
resulting in a possible increase in interpolation error during
reverse particle tracking. Large grid sizes have a similar
effect on the convergence of the solution but the discretiza-
tion error will increase. (2) A fully explicit scheme can be
used in conjunction with the MMOC to save computer time
and storage space without limiting the time step to a very
small value. (3) In most flow situations the application of the
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Galerkin scheme to the flux equation results in a quite
accurate velocity field despite the assumption of linear varia-
tion of velocity being inconsistent with a linear head varia-
tion. Although the mixed finite-element approach (e.g.,
Chiang et al., 1989) may provide a2 more accurate velocity
solution, the fact that it results in large and poorly condi-
tioned matrices for heterogeneous aquifers (Allen et al.,
1992) makes the Galerkin scheme applied to the flux equa-
tion more favorable. Finally, the MMOC approach alle-
viates the numerical oscillation problem In convection-
dominated solute transport that commonly exists in a
finite-clement solute transport model, but it suffers from
numerical dispersion as do other numerical models. A
higher order shape function for the interpolation can reduce
this problem but may introduce numerical oscillations
(Cheng et al., 1984).

The FORTRAN source code of the model is available
through the first author at the Department of Hydrology
and Water Resources, Umiversity of Anizona, Tucson, AZ
85721 (phone: 602-621-5943).
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Appendix
The analytic solution of two-dimensional steady-state

flow towards the water table 1s given below. The flow
domain is of height H and length L, and the recharging strip
extends from a distance a to b from the lefi-hand side. Both



the vertical sides are impervious, and the lower boundary is 9
the water table. The flow through the strip is . The origin of 9= K., (A3)
coordinates in the following expressions is at the lower lefi
corner of the domain. The actual variables are denoted with The steady-state solution is then obtained as
an astenisk to distinguish them from the dimensionless .
forms. Exponential relations are assumed as follows: K=e¢2+ q(b—a) (1 —e )+
Ki' = Kuxe™ K" =Kae®™ 0=0:+(0:— 6,)e™ L
L (AD ?Tq JHn2 3 hfsilni}n:} = :n(hna}sir:]hipn;} o
: : kit ol =] 25 - P
where K;¥ is the hydraulic conductivity in the i direction. : =S =) Daco s (e )3
Dimensionless variables are defined as where An = (n7)/L; and pa = V% + As”.
— The dimensionless Darcy velocity components in x and
X = ax” VKa/Ksa  sothat L= aLl® v/ K/ Ks; z directions are obtained as ’
a=aa" VKe/Ka; b=oab*VKe/Ka (A2) LR/ AT o
z=az" sothat H=aH* (A3) * T ox (
g e K (A4) d e o) :
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