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An iterative co-conditional Monte Carlo simulation (IMCS) approach is developed.
This approach derives co-conditional means and variances of transmissivity (T), head
(f), and Darcy’s velocity (q), based on sparse measurements ofT and f in
heterogeneous, confined aquifers under steady-state conditions. It employs the
classical co-conditional Monte Carlo simulation technique (MCS) and a successive
linear estimator that takes advantage of our prior knowledge of the covariances ofT
andf and their cross-covariance. In each co-conditional simulation, a linear estimate
of T is improved by solving the governing steady-state flow equation, and by updating
residual covariance functions iteratively. These residual covariance functions consist
of the covariance ofT andf and the cross-covariance function betweenT andf. As a
result, the non-linear relationship betweenT and f is incorporated in the
co-conditional realizations ofT and f. Once theT and f fields are generated, a
corresponding velocity field is also calculated. The average of the co-conditioned
realizations of T, f, and q yields the co-conditional mean fields. In turn, the
co-conditional variances ofT, f, andq, which measure the reduction in uncertainty
due to measurements ofT andf, are derived. Results of our numerical experiments
show that the co-conditional means from IMCS forT andf fields have smaller mean
square errors (MSE) than those from a non-iterative Monte Carlo simulation
(NIMCS). Finally, the co-conditional mean fields from IMCS are compared with the
co-conditional effective fields from a direct approach developed by Yehet al. [Water
Resources Research, 32(1), 85–92, 1996].q 1998 Elsevier Science Limited.
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1 INTRODUCTION

During the past few decades, numerous mathematical
models have been developed to solve the inverse problem
associated with groundwater systems, given scattered
measurements of hydraulic head,f, and transmissivity,T
(refer to Yeh32 and Hanna14). One popular method is the
minimum-output-error-based approach (e.g. Yeh and
Tauxe31; Gavalas et al.10; Neuman and Yakowitz23;
Neuman24; Clifton and Neuman4; Cooley5; Carrera and
Neuman1,2; Willis and Yeh27). A drawback of this approach
is that the solution is non-unique, and the identity of the
estimate is often undefined. In other words, using different
initial guesses this approach can lead to different results.

Subsequently, it is unclear whether the estimate is a
conditional mean, an effective mean, a conditional realiza-
tion or simply an estimate without any statistical meaning,
and the uncertainty associated with the estimated field
cannot be addressed properly.

Uniquely identifying the spatial distribution of
transmissivity in a heterogeneous aquifer under steady-
state flow conditions is an impossible task, unless all the
hydraulic heads are known and boundary fluxes are
specified. For cases with scattered T andf measurements
(or stochastic inverse problems referred to by Yehet al.30), a
logical inverse approach should adopt the conditional
stochastic concept. That is, one should attempt to obtain T
andf fields that preserve their observed values at all sample
locations and their underlying statistical properties (i.e. the
mean and covariance). Furthermore, the estimated T andf
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fields should satisfy the governing flow equation. According
to the conditional probability concept, these fields are
conditional realizations of the ensemble. Implicitly, this
concept constrains the number of possible T andf fields
that can be derived from an inverse model, though many
possible realizations of such conditional fields remain. In
contrast, the co-conditional mean (the expected value of
all possible conditional realizations) is a uniquely defined
field. By focusing on estimating the co-conditional mean
field, an inverse model, thus, avoids the non-uniqueness
problem conceptually.

The geostatistical inverse approach (Kitanidis and
Vomvoris20; Hoeksema and Kitanidis16; Dagan7; Rubin
and Dagan25; Gutjahr and Wilson12, Hoeksema and
Clapp18; Kitanidis21) is one possible method for estimating
co-conditional mean fields of T andf. It relies on the
cokriging technique, which takes advantage of the spatial
continuity of the natural log of transmissivity field (lnT) and
uses the linearized relationship between lnT and f. In
cokriging, the unknownf (mean removed lnT) value at a
point of interest is estimated by a weighted linear combina-
tion of the observedf andh (mean removedf). The weights
are determined by conditioning the estimator to be unbiased
and to have a minimum variance. Dagan6,7 and Rubin and
Dagan25 show that when the randomf andh fields are jointly
Gaussian with known means and covariances, cokriging
estimates and covariances are equivalent to the conditional
means and covariances for given measurements off andh.

In general, the cross-covariance function betweenf andh
and the covariance function ofh, required in cokriging, are
derived from a first-order linearized version of the
governing flow equation (Mizellet al.22; Kitanidis and
Vomvoris20; and Hoeksema and Kitanidis16,17), while the
relation betweenT andf is non-linear, even if the transfor-
mation ofT (ln T) is adopted. The linearized relation, based
on small perturbation theory, will only give reasonable
results if the joint distribution off andh is normal, which
is true when the unconditional variance off (j2

f ) is small. In
cases of large variances off, the joint distribution off andh
is unlikely to be normal and the use of classical geostatis-
tical techniques is not justified. As in the classical inverse
models, inversion of the matrix in the geostatistical inverse
approach can suffer from numerical instability problems.
The instability is not the problem of the geostatistical
approaches, but it arises from the poorly constructed
covariance and cross-covariance matrices used in them.
Dietrich and Newsam9 showed that, as the amount of
available data increases and the discretization of the
system is refined, an ill-conditioned system of equations
may arise.

To overcome the above-mentioned problems, Yehet al.29

proposed an iterative cokriging-like method that combines
cokriging and the numerical flow model iteratively. Yeh
et al.30 developed a successive linear estimator with the
use of a numerical flow model to incorporate the non-
linear relationship betweenT and f. Although they
attempted to derive the co-conditional mean fields ofT

and f, their approach suffers from theoretical difficulties.
Consider the conditional mean flow equation

= Tc(x)

 �

·= fc(x)

 �� �

þ tc(x)·=hc(x)
� �
 �

¼ 0 (1)

where subscript ‘c’ denotes conditioned and〈〉 represents
the expected value.〈Tc〉 and 〈fc〉 are the co-conditional
meanT and f, respectively, whiletc and hc represent the
conditional perturbations ofT and f, respectively. Notice
that〈Tc〉 and〈fc〉, themselves alone, in eqn (1) do not satisfy
the mass-conservation principle unless the second term in
eqn (1) is included. Difficulties in evaluating the second
term compel Yehet al.30 to approximate the conditional
mean flow equation by using only the first term in eqn (1).
Thus, estimates of the co-conditional meanT andf fields
by their approach are merely the co-conditional effectiveT
and f fields that satisfy the continuity equation, and pre-
serve the measuredT and f values at sample locations.
They claimed that the co-conditional effectiveT and f

fields would be close to the co-conditional mean fields if
the heterogeneity is mild. Since their approach attempts to
derive the co-conditional mean fields directly, it will be
called the direct approach in this paper.

The co-conditional Monte Carlo simulation is another
possible approach, which can be utilized to derive the
co-conditional means and variances ofT andf fields. This
simulation approach relies on cokriging and a superposition
technique (Journel and Huijbregts19) to generate realiza-
tions of the conditionalT field based on measurements of
T andf. TheT fields are then used in a numerical model to
derive the corresponding realizations of head. By averaging
all the realizations, conditional mean fields are thus
obtained. Gutjahret al.13 used a co-conditional method to
address the uncertainties in groundwater travel time and
paths. Harter and Yeh15 extended this method to study the
effect of conditioning on the uncertainty in predicting flow
and solute transport in the vadose zone. Since cokriging is a
linear predictor, it does not fully consider the non-linear
relationship betweenT and f fields, and the simulatedf
fields, based on the co-conditionedT fields, will not
necessarily honor the measured head values at the
observation locations. This discrepancy will be exacerbated
if aquifer heterogeneity increases. Therefore, theT and f

fields cannot strictly be the co-conditional fields and
variances are not co-conditional variances.

The goal of this paper is to develop a new co-conditional
Monte Carlo simulation technique. It determines the
co-conditional mean fields ofT, f, and q and their
conditional variances, without resorting to the conditional
mean flow and Darcy’s equations. Hence, the problems
associated with the direct approach by Yehet al.30 are
avoided. This new co-conditional simulation technique is
also different from the previously mentioned Monte Carlo
approach: it incorporates the non-linear relationship
betweenT and f fields and can produce head fields that
honor the measured values at observation locations. The
ability of our new approach is demonstrated through some
numerical examples. The proposed technique will be tested
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against a hypothetical aquifer. This technique will show the
following conclusions: (a) the more observation points we
have, the best estimation we can get; (b) the fewer observa-
tion errors, the more accurate the estimation; and (c) the less
variance of logK, the best estimate we can get. Although the
present approach can be applied to any problem, it was
limited in this current paper to the study of error-free
observations in a hypothetical aquifer. Under the above
limitations it was possible to obtain optimum stability con-
ditions, which are not available in the geostatistical
approaches. More work is needed to apply the present
approach to a real-world case study taking the measurement
errors into consideration.

2 PROBLEM FORMATIONS

Consider lnT(x) of an aquifer to be a stationary stochastic
process with a constant unconditional mean,E[ln T] ¼ F,
and f is the unconditional lnT perturbation. The
corresponding hydraulic head is given byf(x) ¼ H(x) þ

h(x), where H ¼ E[f] and h is the unconditional head
perturbation. Suppose we havenf observed transmissivity
values, f p

i ¼ (ln Tp
i ¹ F), and nh observed head values,

hp
j ¼ (fp ¹ H), where i ¼ 1,…, nf and j ¼ nf þ 1,…,

nf þ nh. According to the stochastic concept, many possible
realizations of stochasticf and lnT fields that preserve the
observed head and transmissivity values at sample locations
exist, and satisfy their underlying statistical properties (i.e.
mean and covariance) as well as the governing flow
equation. One way to derive these realizations is to use a
co-conditional MCS approach similar to that by Gutjahr
et al.13 This co-conditional MCS approach consists of the
following steps. First, classical cokriging is performed,
based on the observedf p

i and hp
j , to construct an

approximate conditionalf field (mean removed lnT). That is

fck(x0) ¼
∑nf

i ¼ 1
li0f p

i (xi) þ
∑nf þ nh

j ¼ nf þ 1
mj0hp

j (xj) (2)

where fck(x0) is the cokrigedf value at locationx0 (the
subscript, ck, stands for classical cokriging). The terms
l i0 andm j0 are the classical cokriging weights, which can
be evaluated as follows:∑nf

i ¼ 1
li0Rff (xi ,xl) þ

∑nf þ nh

j ¼ nf þ 1
mj0Rhf (xj ,xl) ¼ Rff (x0,xl)

l ¼ 1, 2, …,nf

∑nf

i ¼ 1
li0Rfh(xi ,xl) þ

∑nf þ nh

j ¼ nf þ 1
mj0Rhh(xj , xl) ¼ Rfh(x0,xl)

l ¼ nf þ 1,nf þ 2, …,nf þ nh

ð3Þ

where Rff is the unconditional covariance off (assumed
known); Rhh and Rfh are the unconditional covariance of
h and the cross-covariance off and h, respectively.Rhh

and Rfh are derived from a first-order numerical
approximation (Dettinger and Wilson8 and Sun and
Yeh26) for its flexibility for the case of bounded domains
and non-stationary problems. Note thatF is assumed to be
known andH(x) is derived by solving the governing flow
equation with the transmissivity equal to exp[F]. Similarly,
one can use classical cokriging based on the observedf p

i

andhp
j to construct a cokriged head field. Next, an uncondi-

tional realization of the perturbation of the lnT(x) field,
fu(x), which maintains the prescribed covariance function
is generated. Then, the corresponding unconditional head
field, fu(x) ¼ H(x) þ hu(x), is calculated by solving the
governing flow equation, withTu(x) ¼ exp(F þ fu(x)).
From thesefu(x) andhu(x) fields, samples are taken at the
same observation locations. Cokriging is again applied
using the values of these samples to derive the cokriging
estimates,fuk(x)andhuk(x). Finally, conditional realizations
of the transmissivity and head fields,fc(x) and hc(x), are
obtained as follows:

fc(x) ¼ fck(x) þ fu(x) ¹ fuk(x)
� �

hc(x) ¼ hck(x) þ hu(x) ¹ huk(x)
� � (4)

The above-mentioned steps are then repeated, using
different seed numbers, to generate different realizations
of the conditional fields ofTc(x) and fc(x). Note that
Tc(x) ¼ exp(F þ fc(x)) andfcðxÞ ¼ HðxÞ þ hcðxÞ are consis-
tent with the measured values, andTc(x) retains the same
covariance function as that of the true transmissivity field.
However, these fields do not necessarily conserve mass
since the cokriged fields are linear estimates. This method
will be called the non-iterative co- conditional Monte Carlo
simulation (NIMCS or Approach I) throughout the rest of
the paper.

To circumvent the mass-conservation problem associated
with Approach I, our new approach adopts an iterative
procedure to improve the co-conditionalfc(x) estimates
derived from Approach I. Specifically, onceTc(x) is
obtained, it is then used in the governing flow given by
eqn (5) along with specified boundary conditions to derive
a new head field,f:

= Tc(x)·=f(x)
� �

þ Q(x) ¼ 0 (5)

In eqn (5),x is the location vector andQ is a deterministic
source/sink term. Again, this new head field is an approx-
imate field conditioned on thef and h measurements. It
does not necessarily agree with the observed head values
at the sample locations due to the assumption of the linear
relationship betweenf andh. At this step, the resultantf and
h fields are identical to those by Gutjahret al.13 To improve
the linearity assumption, a successive linear estimator,
similar to the one proposed by Yeh et al.,30 is adopted to
modify the estimate ofTc(x):

Y(r þ 1)
c (x0) ¼ Y(r)

c (x0) þ
∑nf þ nh

j ¼ nf þ 1
q(r)

j0 fp
j (xj) ¹f(r)

j (xj)
h i

(6)
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where the q j0 values are the weighting coefficients
associated with the estimate at locationx0 with respect to
the head measurement at locationxj; r is the iteration index;
andYc (equal toF þ fck, at r ¼ 0) is an estimate of the true
ln T. The difference between lnT andYc is then denoted by
y; f(r)

j is the head at thejth location obtained from eqn (5)
at iterationr; andfp

j is the observed head at locationj (i.e.
fp

j ¼ Hj þ hp
j ). To determine optimal weighting coefficients

that ensure the minimal variance of our new estimate, the
minimal mean square error (MSE) criterion is used. That is,
E[(ln T ¹ Yc)

2] is differentiated with respect toq j0 and the
resultant is set to zero. Thus, a system of equations is
formed

∑nf þ nh

j ¼ nf þ 1
q

(r)
j0 e

(r)
hh(xj ,xl) ¼ e

(r)
yh(x0, xl) l ¼ nf þ 1, …,nf þ nh

(7)

in which ehh represents the covariance of the residualh ¼

(f ¹ f (r)) and eyh represents the cross-covariance between
residualsh andy¼ (ln T ¹ Y(r)

c ). If eyh andehh are given, the
q values can be determined by solving eqn (7). With new
values, eqn (6) is employed to update our estimate ofYc.
The covariance and cross-covariance,ehh and eyh, required
in eqn (7) are approximated by a first-order analysis for a
finite element groundwater-flow model as described by
Equation (12) in Yehet al.30 The covariance of the residual
y (eyy) is determined at each iteration as follows:

e(1)
yy (x0,xk) ¼ Rff (x0, xk) ¹

∑nf

i ¼ 1
li0Rff (x0, xi)

¹
∑nf þ nh

j ¼ nf þ 1
mj0Rfh(xk,xj) for r ¼ 0

e(r þ 1)
yy (x0,xk) ¼ e(r)

yy (x0,xk) ¹
∑nf þ nh

i ¼ nf þ 1
q(r)

i0 e(r)
yh(xk,xi)

for r $ 1

ð8Þ

wherek ¼ 1, 2,…, N, l andm are weighting coefficients,
andRff is the given unconditional covariance function off.
After updatingY(r)

c (x), the flow given by eqn (5) is solved
again with the updatedY(r)

c (x) for a new head field,f(r).
This iterative procedure continues until the absolute
difference inj2

f (the variance of the estimated lnT field)
between two successive iterations is smaller than a
prescribed tolerance. If the criterion is not met, neweyh

and ehh are evaluated again, and eqn (7) is solved to
obtain a new set of weights. These weights are then used
in eqn (6) with new values of(fp

j ¹ f
(r)
j ) to obtain a new

estimate, Yc(x). We refer to this new approach as an
iterative co-conditional Monte Carlo simulation technique
(IMCS) and it will be labeled as Approach II in the follow-
ing numerical examples. Based on Approach II, different
startingTc(x) fields will result in differentYc(x) andfc(x)
fields after the iteration process. Averaging all realizations

of Yc(x) and fc(x) fields yields the co-conditional mean
transmissivity and head fields. In turn, the co-conditional
variances ofT andf are evaluated.

The concept of our new approach is different from that of
the direct approach by Yehet al.30 although the algorithm is
similar. The direct approach attempts to derive the
co-conditional mean fields by using the cokrigedT as a
starting estimate of the conditional meanT field, then it
applies an iterative procedure to update the estimate. In
theory, their approach requires them to solve the conditional
mean flow equation. However, difficulties in evaluating the
second term in eqn (1) forced them to approximate the
conditional mean flow equation by using eqn (5). In
contrast, our new approach starts with estimates of
co-conditional realizations ofT fields, and then solves the
exact governing flow equation of conditional realizations
during the iteration. Thus, the use of the approximate
mean equation is avoided and the co-conditional variance
can be evaluated directly without the use of the first-order
approximation.

3 EXAMPLES

Application of inverse models to any field problems,
generally yields inconclusive results unless the field site is
fully characterized with detailed data. No such field site
exists, and testing of our stochastic approach will rely on
a hypothetical heterogeneous aquifer where the hydraulic
properties and boundary conditions are known exactly.
This aquifer is assumed to be 40 m3 40 m in dimension
and is discretized into 1600 elements (each 1 m3 1 m).
Each element is assigned a lnT value using a random
field generator developed by Gutjahr.11 This generated
ln T field has zero mean and an exponential correlation
structure with variance,j2

f , of 3.24, and anisotropic correla-
tion scales (x ¼ 6 m andly ¼ 2 m in thex andy directions,
respectively). The upper and lower sides of the aquifer are
assigned as no-flow boundaries, and the left and right sides
are prescribed head boundaries with head values 10.4 m and
10.0 m, respectively. In addition, a pumping well with a
constant discharge (Qw ¼ 3 m3/m2/s) is located at a point
(18 m, 23 m). With the generated transmissivity field and
the prescribed conditions, a finite element model based on
the approach of Yehet al.28 is then used to derive the
hydraulic head distribution at nodal points. The head
values at the four nodes of an element are averaged to
represent the head at the center of the element. Using
these head and transmissivity fields, the corresponding
Darcy’s velocity field is then calculated based on Darcy’s
law. Thereafter, these generated transmissivity, head, and
velocity fields will be called the true fields (Fig. 1(a)–(c)).

From the true transmissivity and head fields, forty-two
transmissivity (nf ¼ 42) and sixty-three head values (nh ¼

63) are sampled at uniformly distributed locations (circles in
Fig. 1(a) and (b)). These transmissivity and head values are
considered as our measurements. Note that we choose fewer
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transmissivity observations than the head ones for practical
purposes and to show how our approach will perform.
Assuming that the covariance function off and boundary
conditions are known exactly, 400 realizations off and h
fields conditioned on the measurements are produced using
Approaches I and II. Darcy’s law is employed to derive the
corresponding velocity fields. By averaging these realiza-
tions, co-conditional meanf, h, and velocity fields are
determined, which are compared with the true fields using
the following criteria:

P1 ¼
1
N

∑N
i ¼ 1

(Z0i ¹ Zei) andP2 ¼
1
N

∑N
i ¼ 1

(Z0i ¹ Zei)2 (9)

In eqn (9), Z0i and Zei are the true and estimated
co-conditional mean transmissivity or head values at the
ith location, respectively, andN is the total number of
elements.P1 is a measure of the bias, andP2 is the MSE
of the estimates.

4 RESULTS AND DISCUSSION

A visual illustration of the performance of the two
approaches is provided in Fig. 1. In general, thef fields
derived from Approach I (Fig. 1(d)) and Approach II

(Fig. 1(g)) are smoother than the truef field. This is
attributed to the nature of conditional expectation with a
limited number of observations. Both approaches depict
the general spatial structure of the truef field, while thef
field from Approach II reveals more details, since it
incorporates the non-linearity betweenf and h in the
iterative process. In addition, each realization of the
co-conditional f and h fields, generated by Approach II,
satisfies the governing flow equation during each iteration.
As a result, the conditional head field from Approach II is
improved successively, not only at the observed locations
but also at their vicinity. The resultant head field of
Approach II is much closer to the true one than that of
Approach I (Fig. 1(h) and (e)). Some spurious kinks
appear in the head field from Approach I, which can be
attributed to the linear operation of cokriging and the
superposition technique.

As expected, the conditional mean velocity field
from Approach II is smoother than the true one (Fig. 1(i)
and (c)). The velocity resulting from Approach I
(Fig. 1(f)) suffers from anomalous sources and sinks due
to the mass-conservation problem mentioned previously.
Again, since each conditional realization off andh fields,
derived from Approach II, satisfies the governing flow
equation, these realizations yield mass-conservative
velocity fields using Darcy’s law. The average of all the

Fig. 1. Comparisons of the true transmissivity, head, and Darcy’s velocity and those derived from Approaches I and II.
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velocity fields leads to the conditional mean velocity which
also satisfies the mass-conservation principle.

Contour maps of the standard deviation of the velocity in
x and y directions (qx and qy, respectively) are shown in
Fig. 2(a) and (b) for Approach I and in Fig. 2(c) and (d)
for Approach II. According to these figures, Approach II
produces conditional velocity fields with smaller condi-
tional standard deviations (less uncertainty). Large values
of the standard deviation near the pumping well (Fig. 2(a)
and (b)) reflect the effect of strong non-linearity caused by
the non-uniform flow regime, which was not considered in

Approach I. This is not the case with Approach II,
demonstrating that the iterative procedure can handle the
non-linearity betweenf andh.

To demonstrate the convergence of our iterative
procedure, the mean, the deviation around the mean, and
the range ofj2

f of 400 conditionalf realizations are plotted
as a function of the iteration number in Fig. 3. Fig. 3 shows
approximately a sort of stability of the calculated variance
of log K as the number of iterations increases. The standard
deviation remains almost constant throughout the iteration
process, indicating that at the end of the iterative process
each conditional realization off field maintains nearly the
same value ofj2

f as the initial unconditionalf field. In other
words, the iterative method seems to converge to the right
optimum. The standard deviation around the mean in the
Monte Carlo simulation is attributed to the effect of the
small domain size used in the study.

Fig. 4(a) shows the change of the variances of the
estimated co-conditional meanf field, S2

f , by the two
approaches with the number of realizations. It can be seen
that S2

f of Approach II converges to a value that is larger
than that of Approach I, and is smaller than that for the true
field. This result is consistent with the previous discussion
of Fig. 1: the incorporation of the non-linearity betweenf
andh reveals more variability and the co-conditional mean
field is smoother than the true field. MSE values of condi-
tional meanf andh fields evaluated at different numbers of
realizations are depicted in Fig. 4(b) and (c), respectively.
Based on these results, one can conclude that (a) variances

Fig. 2. Contours of the conditional standard deviation of (a)qx and (b)qy for Approach I; contours of the conditional standard deviation of
(c) qx and (d)qy for Approach II.

Fig. 3. Mean, maximum and minimum of the variance of the
estimatedf field as a function of the number of iterations.
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and MSE values reach steady values after about 150
realizations, which is far less than the number of realizations
for the unconditional MCS (in agreement with results of
Harter and Yeh15); (b) the MSE for hydraulic head stabilizes
very rapidly and approaches zero after a few realizations for
Approach II, while it takes many more realizations to
stabilize in Approach I; (c) the MSE values for the
conditional means off and h in Approach II are smaller
than those in Approach I.

As mentioned previously, our iterative co-conditional
Monte Carlo simulation technique does not require the use
of the conditional mean flow equation. The average of the
realizations of the co-conditional Monte Carlo simulation

should theoretically be better than that derived from the
direct approach by Yeh et al.30 Nevertheless, the conditional
effective means off, h, qx and qy fields from the direct
approach are in good agreement with those from Approach
II (Fig. 5), suggesting that the direct approach closely
approximates the conditional mean fields. This result
seems plausible because the effect of the term involving
products of perturbations in the mean flow equation
diminishes as the number of observations off or h increases.
This conclusion is important since the direct approach does
not need to conduct a large number of Monte Carlo
simulation runs, resulting in a substantial saving in CPU
time.

Fig. 4. (a) True transmissivity field variance and those from Approaches I and II. (b) MSE of transmissivity estimates of Approaches I and
II. (c) MSE of the head estimates from Approaches I and II as a number of Monte Carlo realizations.

Fig. 5. (a) Co-conditional transmissivity field from Approach II versus the effective transmissivity field by the direct approach.
(b) Co-conditional head field from Approach II versus the effective head field from the direct approach. (c) Co-conditional Darcy’s
velocity field qx from Approach II versus the effectiveqx. (d) Co-conditional Darcy’s velocity fieldqy from Approach II versus the

effectiveqy.
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Finally, the inverse method based on the minimal-output-
error approach (such as Carrera and Glorioso3) can be used
to replace our successive linear estimator in our iterative
co-conditional Monte Carlo simulation algorithm.
However, the approximated co-conditionalf field derived
from Approach I is essential to be used as the startingf
field in the minimal-output-error approach. The approxi-
mate field is close to the correct co-conditional realization.
Thus a global minimum, instead of local minima, can be
obtained. Such an approach, in our opinion, should result in
the same co-conditional mean and variance fields as those
by Approach II. In this way, the identity problem associated
with the classical minimal-output-error approach is
eliminated.

Our technique and the one developed by Kitanidis21 are
conceptually identical. However, the total number of
equations solved using our technique is equal to the
number of head measurements plus one. On the other
hand, the method of Kitanidis21 requires solving a system
of equations of a size that equals the number of head
measurements plus the number of transmissivity
measurements.

5 CONCLUSION

Our proposed IMCS approach is an extension of that by
Yehet al.30 It attempts to include the non-linear relationship
betweenf andh through successive linear approximations.
A hypothetical aquifer was used to demonstrate the
ability of the approach, and we show that iterative
co-conditional Monte Carlo simulation is better than non-
iterative co-conditional Monte Carlo simulation. The
iterative approach can produce realizations of transmissivity
and head fields that agree with the observations at
measurement locations even in highly heterogeneous
aquifers under non-uniform flow conditions. In addition,
iterative co-conditional Monte Carlo simulation can yield
mass-conservative co-conditional mean velocities and
mass-conservative conditional variances, which are crucial
in the stochastic analysis of solute transport in
heterogeneous aquifers. Since our approach is a Monte
Carlo simulation approach, it requires significant computa-
tional effort. We believe this shortcoming can be overcome
in the future by the rapid advances in computing technology.
It is not our intention to demonstrate the ability of our
technique for solving real-world problems although our
approach is not limited to zero observation error. For field
problems, where measurement errors and other unknown
factors may play important roles, more theoretical develop-
ment is still needed and the ability of our iterative approach
remains to be tested.
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