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An iterative co-conditional Monte Carlo simulation (IMCS) approach is developed.
This approach derives co-conditional means and variances of transmis$jvibhead

(¢), and Darcy’s velocity ), based on sparse measurementsTofind ¢ in
heterogeneous, confined aquifers under steady-state conditions. It employs the
classical co-conditional Monte Carlo simulation techniqgue (MCS) and a successive
linear estimator that takes advantage of our prior knowledge of the covariang@es of
and¢ and their cross-covariance. In each co-conditional simulation, a linear estimate
of T is improved by solving the governing steady-state flow equation, and by updating
residual covariance functions iteratively. These residual covariance functions consist
of the covariance of and¢ and the cross-covariance function betwdeamd¢. As a
result, the non-linear relationship betweéh and ¢ is incorporated in the
co-conditional realizations of and ¢. Once theT and ¢ fields are generated, a
corresponding velocity field is also calculated. The average of the co-conditioned
realizations of T, ¢, and q yields the co-conditional mean fields. In turn, the
co-conditional variances of, ¢, andq, which measure the reduction in uncertainty
due to measurements ®fand ¢, are derived. Results of our numerical experiments
show that the co-conditional means from IMCS Toand ¢ fields have smaller mean
square errors (MSE) than those from a non-iterative Monte Carlo simulation
(NIMCS). Finally, the co-conditional mean fields from IMCS are compared with the
co-conditional effective fields from a direct approach developed byeteth [Water
Resources ResearcB2(1), 85—-92, 1996]© 1998 Elsevier Science Limited.

Keywords:inverse problem, iterative approach, geostatistics, Monte Carlo simulation,
heterogeneous aquifers, conditional means.

1 INTRODUCTION Subsequently, it is unclear whether the estimate is a
conditional mean, an effective mean, a conditional realiza-
During the past few decades, numerous mathematicaltion or simply an estimate without any statistical meaning,
models have been developed to solve the inverse problemand the uncertainty associated with the estimated field
associated with groundwater systems, given scatteredcannot be addressed properly.
measurements of hydraulic heagl, and transmissivityT Uniquely identifying the spatial distribution of
(refer to Yel? and Hann&'). One popular method is the transmissivity in a heterogeneous aquifer under steady-
minimum-output-error-based approach (e.g. Yeh and state flow conditions is an impossible task, unless all the
Tauxé’; Gavalas et al'® Neuman and YakowitZ: hydraulic heads are known and boundary fluxes are
Neuman*, Clifton and Neumafy Cooley’; Carrera and  specified. For cases with scattered T andheasurements
Neumart% Willis and Yel?"). A drawback of this approach  (or stochastic inverse problems referred to by ¥eal>%), a
is that the solution is non-unique, and the identity of the logical inverse approach should adopt the conditional
estimate is often undefined. In other words, using different stochastic concept. That is, one should attempt to obtain T
initial guesses this approach can lead to different results. and¢ fields that preserve their observed values at all sample
locations and their underlying statistical properties (i.e. the
*Corresponding author. E-mail: ybiem@mac.hwr.arizona.edu mean and covariance). Furthermore, the estimated Tpand
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fields should satisfy the governing flow equation. According and ¢, their approach suffers from theoretical difficulties.
to the conditional probability concept, these fields are Consider the conditional mean flow equation
conditional realizations of the ensemble. Implicitly, this
concept constrains the number of possible Tpa)nﬂesqu V[{Te09)V(8c09)] + ([te9 Vhe()]) = 0 (3)
that can be derived from an inverse model, though many where subscript ‘c’ denotes conditioned afidepresents
possible realizations of such conditional fields remain. In the expected valugTy) and (¢ are the co-conditional
contrast, the co-conditional mean (the expected value of meanT and ¢, respectively, whilet, and h, represent the
all possible conditional realizations) is a uniquely defined conditional perturbations of and ¢, respectively. Notice
field. By focusing on estimating the co-conditional mean that(T.) and{¢.), themselves alone, in eqn (1) do not satisfy
field, an inverse model, thus, avoids the non-uniquenessthe mass-conservation principle unless the second term in
problem conceptually. egn (1) is included. Difficulties in evaluating the second
The geostatistical inverse approach (Kitanidis and term compel Yehet al*° to approximate the conditional
Vomvoris®®, Hoeksema and Kitanidt§ Dagar; Rubin mean flow equation by using only the first term in eqn (1).
and Dagaf®; Gutjahr and Wilsol¥, Hoeksema and Thus, estimates of the co-conditional mekand ¢ fields
Clapp'® Kitanidis?®) is one possible method for estimating by their approach are merely the co-conditional effeclive
co-conditional mean fields of T and. It relies on the and ¢ fields that satisfy the continuity equation, and pre-
cokriging technique, which takes advantage of the spatial serve the measured and ¢ values at sample locations.
continuity of the natural log of transmissivity field () and They claimed that the co-conditional effectivie and ¢
uses the linearized relationship betweenTland ¢. In fields would be close to the co-conditional mean fields if
cokriging, the unknowrf (mean removed |if) value at a the heterogeneity is mild. Since their approach attempts to
point of interest is estimated by a weighted linear combina- derive the co-conditional mean fields directly, it will be
tion of the observeflandh (mean removea). The weights called the direct approach in this paper.
are determined by conditioning the estimator to be unbiased The co-conditional Monte Carlo simulation is another
and to have a minimum variance. Da§drand Rubin and possible approach, which can be utilized to derive the
Dagart® show that when the randofandh fields are jointly co-conditional means and variancesladnd ¢ fields. This
Gaussian with known means and covariances, cokriging simulation approach relies on cokriging and a superposition
estimates and covariances are equivalent to the conditionattechnique (Journel and Huijbred®s to generate realiza-
means and covariances for given measurementsnd h. tions of the conditionall field based on measurements of
In general, the cross-covariance function betweamdh T and¢. TheT fields are then used in a numerical model to
and the covariance function bf required in cokriging, are  derive the corresponding realizations of head. By averaging
derived from a first-order linearized version of the all the realizations, conditional mean fields are thus
governing flow equation (Mizelet al??% Kitanidis and obtained. Gutjahet al.*® used a co-conditional method to
Vomvoris’®, and Hoeksema and Kitanidfs™), while the address the uncertainties in groundwater travel time and
relation betweefT and¢ is non-linear, even if the transfor-  paths. Harter and Yéf extended this method to study the
mation of T (In T) is adopted. The linearized relation, based effect of conditioning on the uncertainty in predicting flow
on small perturbation theory, will only give reasonable and solute transport in the vadose zone. Since cokriging is a

results if the joint distribution of andh is normal, which linear predictor, it does not fully consider the non-linear
is true when the unconditional variancefds?) is small. In relationship betweef and ¢ fields, and the simulated
cases of large variancesfthe joint distribution of andh fields, based on the co-conditioned fields, will not

is unlikely to be normal and the use of classical geostatis- necessarily honor the measured head values at the
tical techniques is not justified. As in the classical inverse observation locations. This discrepancy will be exacerbated
models, inversion of the matrix in the geostatistical inverse if aquifer heterogeneity increases. Therefore, Thend ¢
approach can suffer from numerical instability problems. fields cannot strictly be the co-conditional fields and
The instability is not the problem of the geostatistical variances are not co-conditional variances.
approaches, but it arises from the poorly constructed The goal of this paper is to develop a hew co-conditional
covariance and cross-covariance matrices used in themMonte Carlo simulation technique. It determines the
Dietrich and Newsarh showed that, as the amount of co-conditional mean fields off, ¢, and q and their
available data increases and the discretization of the conditional variances, without resorting to the conditional
system is refined, an ill-conditioned system of equations mean flow and Darcy’s equations. Hence, the problems
may arise. associated with the direct approach by Yehal* are

To overcome the above-mentioned problems, ¥ehl >° avoided. This new co-conditional simulation technique is
proposed an iterative cokriging-like method that combines also different from the previously mentioned Monte Carlo
cokriging and the numerical flow model iteratively. Yeh approach: it incorporates the non-linear relationship
et al*° developed a successive linear estimator with the betweenT and ¢ fields and can produce head fields that
use of a numerical flow model to incorporate the non- honor the measured values at observation locations. The
linear relationship betweerlT and ¢. Although they ability of our new approach is demonstrated through some
attempted to derive the co-conditional mean fieldsTof  numerical examples. The proposed technique will be tested
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against a hypothetical aquifer. This technique will show the and Ry, are derived from a first-order numerical
following conclusions: (a) the more observation points we approximation (Dettinger and WilsBnand Sun and
have, the best estimation we can get; (b) the fewer observa-Yeh?®) for its flexibility for the case of bounded domains
tion errors, the more accurate the estimation; and (c) the lessand non-stationary problems. Note thats assumed to be
variance of logK, the best estimate we can get. Although the known andH(x) is derived by solving the governing flow
present approach can be applied to any problem, it wasequation with the transmissivity equal to ekp[Similarly,
limited in this current paper to the study of error-free one can use classical cokriging based on the obseked
observations in a hypothetical aquifer. Under the above andh; to construct a cokriged head field. Next, an uncondi-
limitations it was possible to obtain optimum stability con- tional realization of the perturbation of the Tigx) field,
ditions, which are not available in the geostatistical f,(x), which maintains the prescribed covariance function
approaches. More work is needed to apply the presentis generated. Then, the corresponding unconditional head
approach to a real-world case study taking the measurementield, ¢,(x) = H(X) + hy(x), is calculated by solving the
errors into consideration. governing flow equation, withT(x) = expF + fu(X)).
From these (x) andh(x) fields, samples are taken at the
same observation locations. Cokriging is again applied
2 PROBLEM FORMATIONS using the values of these samples to derive the cokriging
estimatesf(X)and hy(x). Finally, conditional realizations
Consider InT(x) of an aquifer to be a stationary stochastic of the transmissivity and head fieldg(x) and h.(x), are

process with a constant unconditional megfin T] = F, obtained as follows:
and f is the unconditional IT perturbation. The _ B
corresponding hydraulic head is given Byx) = H(X) + o) =Tak(®) + [fu0) — fue(¥) )

h(x), whereH = E[¢] and h is the unconditional head he(X) = hex(X) + [hu(X) — hy(X)]
perturbation. Suppose we hawe observed transmissivity
values, " =(In T —F), and n, observed head values,
hi=(¢"—H), wherei = 1,..., n;f and j=n+1,.., L !

. . . of the conditional fields ofT(x) and ¢.(x). Note that
ny + n,. According to the stochastic concept, many possible Ti(X) = eXpE + (X)) andeu(x) = H(X) + h(x) are consis-

realizations of stochastis and InT fields that preserve the . ’
L - tent with the measured values, afgx) retains the same
observed head and transmissivity values at sample locations

) ) : . o .~~~ 7~ “covariance function as that of the true transmissivity field.
exist, and satisfy their underlying statistical properties (i.e. : .
. : However, these fields do not necessarily conserve mass
mean and covariance) as well as the governing flow

. . s . since the cokriged fields are linear estimates. This method
equation. One way to derive these realizations is to use a

. S . will be called the non-iterative co- conditional Monte Carlo
co-conditional MCS approach similar to that by Gutjahr simulation (NIMCS or Approach ) throughout the rest of
et al*® This co-conditional MCS approach consists of the PP g

. . ) S the paper.
following steps. First, classical cokriging is performed, . : .
N o To circumvent the mass-conservation problem associated
based on the observed® and hi, to construct an

approximate conditiondlfield (mean removed If). That is with Approach' l, our new approac.h' adopts an lterative
procedure to improve the co-conditionf{(x) estimates

The above-mentioned steps are then repeated, using
different seed numbers, to generate different realizations

ny N+ derived from Approach |. Specifically, oncé&.(x) is
fo(Xo) = Z Nofi (%) + Z pjohy (%) ) obtained, it is then used in the governing flow given by
i=1 j=m+1 egn (5) along with specified boundary conditions to derive

where fy(Xo) is the cokrigedf value at locationx, (the a new head fieldy:

subscript, ck, stands for classical cokriging). The terms  V|[T¢(X)-Vé(X)] + Q(X) =0 (5)
Nio and ujq are the classical cokriging weights, which can

be evaluated as follows: In eqgn (5),x is the location vector an@ is a deterministic

source/sink term. Again, this new head field is an approx-

nt M £ imate field conditioned on thé and h measurements. It

Z NioRi (6, %) + D 1ioRu (%, %) = Ry (X0, %) does not necessarily agree with the observed head values
=1 I=m+l at the sample locations due to the assumption of the linear
[=1,2,...,n relationship betweefandh. At this step, the resultarfitand

©)] h fields are identical to those by Gutja#iral."® To improve

i MM the linearity assumption, a successive linear estimator,
Z NioRin(%i, %) + D moRun0§,%) = R0, %) similar to the one proposed by Yeh et #.is adopted to
=1 J=md modify the estimate oT(X):
= +1,m+2,....,0 + Ny, -+

where Ry is the unconditional covariance df(assumed YO D) =Y x0) + D wj(B) {‘br(xj)_(i’j(r)(xj)}

known); Ry, and Ry, are the unconditional covariance of J=n+1

h and the cross-covariance 6fand h, respectively.Ry (6)
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where the wj, values are the weighting coefficients
associated with the estimate at locatinwith respect to
the head measurement at locatigyr is the iteration index;
andY, (equal toF + f, atr = 0) is an estimate of the true
In T. The difference between handY, is then denoted by
y; " is the head at thith location obtained from eqn (5)
at iterationr; and¢;" is the observed head at locatip(i.e. co-conditional mean fields by using the cokrigédas a

¢, =Hj +h ‘). To determine optimal weighting coefficients starting estimate of the conditional mednfield, then it
that ensure the minimal variance of our new estimate, the applies an iterative procedure to update the estimate. In
minimal mean square error (MSE) criterion is used. That is, theory, their approach requires them to solve the conditional
E[(In T — Yo7 is differentiated with respect toj, and the mean flow equation. However, difficulties in evaluating the
resultant is set to zero. Thus, a system of equations issecond term in egn (1) forced them to approximate the

of Y(X) and ¢(X) fields yields the co-conditional mean
transmissivity and head fields. In turn, the co-conditional
variances ofl and¢ are evaluated.

The concept of our new approach is different from that of
the direct approach by Yedt al.*° although the algorithm is
similar. The direct approach attempts to derive the

formed conditional mean flow equation by using egn (5). In
I contrast_,.our new a_pproach_ starts with estimates of

Z D 06,%) = €D (X0, %) 1 =1 +1, ooy 41 co-conditional realizations dF fields, and then solves the
(4 0N 1/ = Fyh 700 fm S e T h exact governing flow equation of conditional realizations
@ during the iteration. Thus, the use of the approximate

mean equation is avoided and the co-conditional variance
can be evaluated directly without the use of the first-order
approximation.

in which e, represents the covariance of the residuat

(¢ — ¢") ande yh represents the cross-covariance between
residualsh andy (In T = YD), If eynandepy are given, the

w values can be determined by solving eqn (7). With new
values, egn (6) is employed to update our estimat¥ .of
The covariance and cross-covariangg,ande,y,, required

in egn (7) are approximated by a first-order analysis for a
finite element groundwater-flow model as described by
Equation (12) in Yelet al*° The covariance of the residual

Y (eyy) is determined at each iteration as follows:

3 EXAMPLES

Application of inverse models to any field problems,
generally yields inconclusive results unless the field site is
fully characterized with detailed data. No such field site
exists, and testing of our stochastic approach will rely on
a hypothetical heterogeneous aquifer where the hydraulic
properties and boundary conditions are known exactly.
This aquifer is assumed to be 40m 40 m in dimension
and is discretized into 1600 elements (each Xnl m).

€5 (%0, %) = Ryt (X0, %) — Z NoRi (%0, X))

M Each element is assigned aTnvalue using a random
- j_%ﬂ”ioth(xk'xj) forr=0 ® field generator developed by Gutjatr.This generated

InT field has zero mean and an exponential correlation
structure with variances?, of 3.24, and anisotropic correla-

Ny +Np
e§,'y+ B (X, %) —ey)(XO %) — z I((r)) %(Xk, %) tion scqles>( =6 mand\y=2min thgx andy directiops,
i=mn+1 respectively). The upper and lower sides of the aquifer are
forr=1 assigned as no-flow boundaries, and the left and right sides
are prescribed head boundaries with head values 10.4 m and
wherek = 1, 2,..., N, A and u are weighting coefficients,  10.0 m, respectively. In addition, a pumping well with a

andRg is the given unconditional covariance functionfof
After updatingY{"(x), the flow given by eqn (5) is solved
again with the update&ér)(x) for a new head fieldg(r).
This iterative procedure continues until the absolute the approach of Yelet al
difference ino? (the variance of the estimated Thfield) hydraulic head distribution at nodal points. The head
between two successive iterations is smaller than avalues at the four nodes of an element are averaged to
prescribed tolerance. If the criterion is not met, ney represent the head at the center of the element. Using
and e,, are evaluated again, and eqn (7) is solved to these head and transmissivity fields, the corresponding
obtain a new set of weights. These weights are then usedDarcy’s velocity field is then calculated based on Darcy’s
in egn (6) with new values o@s, qu(r)) to obtain a new law. Thereafter, these generated transmissivity, head, and
estimate, Y,(xX). We refer to this new approach as an velocity fields will be called the true fields (Fig. 1(a)—(c)).

constant dischargel, = 3 m¥m?s) is located at a point
(18 m, 23 m). With the generated transmissivity field and
the prescribed conditions, a finite element model based on
128 is then used to derive the

iterative co-conditional Monte Carlo simulation technique
(IMCS) and it will be labeled as Approach Il in the follow-
ing numerical examples. Based on Approach Il, different
starting T¢(x) fields will result in differentY.(x) and ¢ .(x)
fields after the iteration process. Averaging all realizations

From the true transmissivity and head fields, forty-two
transmissivity (; = 42) and sixty-three head values, (=
63) are sampled at uniformly distributed locations (circles in
Fig. 1(a) and (b)). These transmissivity and head values are
considered as our measurements. Note that we choose fewer
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Fig. 1. Comparisons of the true transmissivity, head, and Darcy’s velocity and those derived from Approaches | and Il

transmissivity observations than the head ones for practical(Fig. 1(g)) are smoother than the trdefield. This is
purposes and to show how our approach will perform. attributed to the nature of conditional expectation with a
Assuming that the covariance function fohnd boundary  limited number of observations. Both approaches depict
conditions are known exactly, 400 realizationsfaind h the general spatial structure of the triugeld, while thef
fields conditioned on the measurements are produced usindield from Approach Il reveals more details, since it
Approaches | and II. Darcy’s law is employed to derive the incorporates the non-linearity betwednand h in the
corresponding velocity fields. By averaging these realiza- iterative process. In addition, each realization of the
tions, co-conditional meat, h, and velocity fields are  co-conditionalf and h fields, generated by Approach I,
determined, which are compared with the true fields using satisfies the governing flow equation during each iteration.
the following criteria: As a result, the conditional head field from Approach Il is
Lo Lo ibmprO\I/ed suc%essively, not orr:ly at thle obsgrv%d fIO(igtio?s
2 ut also at their vicinity. The resultant head field o
Py= Ni;(z"‘ —Zq) andP, = Ni; (Zoi — Ze)) ©) Approach Il is much closer to the true one than that of
Approach 1 (Fig. 1(h) and (e)). Some spurious kinks
In egn (9), Zs and Z4 are the true and estimated appear in the head field from Approach I, which can be
co-conditional mean transmissivity or head values at the attributed to the linear operation of cokriging and the
ith location, respectively, andll is the total number of  superposition technique.
elementsP; is a measure of the bias, aij is the MSE As expected, the conditional mean velocity field
of the estimates. from Approach Il is smoother than the true one (Fig. 1(i)
and (c)). The velocity resulting from Approach |
(Fig. 1(f)) suffers from anomalous sources and sinks due
4 RESULTS AND DISCUSSION to the mass-conservation problem mentioned previously.
Again, since each conditional realization foAnd h fields,
A visual illustration of the performance of the two derived from Approach IlI, satisfies the governing flow
approaches is provided in Fig. 1. In general, thigelds equation, these realizations yield mass-conservative
derived from Approach | (Fig. 1(d)) and Approach Il velocity fields using Darcy’s law. The average of all the
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Fig. 2. Contours of the conditional standard deviation ofdaand (b)q, for Approach I; contours of the conditional standard deviation of
(c) ax and (d)qy for Approach II.

velocity fields leads to the conditional mean velocity which
also satisfies the mass-conservation principle.

Contour maps of the standard deviation of the velocity in
x andy directions {x and q,, respectively) are shown in
Fig. 2(a) and (b) for Approach | and in Fig. 2(c) and (d)
for Approach Il. According to these figures, Approach Il
produces conditional velocity fields with smaller condi-

Approach |. This is not the case with Approach I,
demonstrating that the iterative procedure can handle the
non-linearity betweemandh.

To demonstrate the convergence of our iterative
procedure, the mean, the deviation around the mean, and
the range ob? of 400 conditionalf realizations are plotted
as a function of the iteration number in Fig. 3. Fig. 3 shows

tional standard deviations (less uncertainty). Large values approximately a sort of stability of the calculated variance
of the standard deviation near the pumping well (Fig. 2(a) of log K as the number of iterations increases. The standard
and (b)) reflect the effect of strong non-linearity caused by deviation remains almost constant throughout the iteration

the non-uniform flow regime, which was not considered in

1 1 1 LI L

5 10 15
iteration number

Fig. 3. Mean, maximum and minimum of the variance of the
estimated field as a function of the number of iterations.

process, indicating that at the end of the iterative process
each conditional realization dffield maintains nearly the
same value 067 as the initial unconditiondlfield. In other
words, the iterative method seems to converge to the right
optimum. The standard deviation around the mean in the
Monte Carlo simulation is attributed to the effect of the
small domain size used in the study.

Fig. 4(a) shows the change of the variances of the
estimated co-conditional meah field, £, by the two
approaches with the number of realizations. It can be seen
that Z? of Approach Il converges to a value that is larger
than that of Approach I, and is smaller than that for the true
field. This result is consistent with the previous discussion
of Fig. 1: the incorporation of the non-linearity betweken
andh reveals more variability and the co-conditional mean
field is smoother than the true field. MSE values of condi-
tional mearf andh fields evaluated at different numbers of
realizations are depicted in Fig. 4(b) and (c), respectively.
Based on these results, one can conclude that (a) variances
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Fig. 4. (a) True transmissivity field variance and those from Approaches | and Il. (b) MSE of transmissivity estimates of Approaches | and
Il. (c) MSE of the head estimates from Approaches | and Il as a nhumber of Monte Carlo realizations.

and MSE values reach steady values after about 150should theoretically be better than that derived from the
realizations, which is far less than the number of realizations direct approach by Yeh et & Nevertheless, the conditional
for the unconditional MCS (in agreement with results of effective means of, h, g, and g, fields from the direct
Harter and Yel?); (b) the MSE for hydraulic head stabilizes approach are in good agreement with those from Approach
very rapidly and approaches zero after a few realizations for Il (Fig. 5), suggesting that the direct approach closely
Approach 1, while it takes many more realizations to approximates the conditional mean fields. This result
stabilize in Approach I; (c) the MSE values for the seems plausible because the effect of the term involving
conditional means of and h in Approach Il are smaller  products of perturbations in the mean flow equation
than those in Approach I. diminishes as the number of observation§afh increases.

As mentioned previously, our iterative co-conditional This conclusion is important since the direct approach does
Monte Carlo simulation technique does not require the usenot need to conduct a large number of Monte Carlo
of the conditional mean flow equation. The average of the simulation runs, resulting in a substantial saving in CPU
realizations of the co-conditional Monte Carlo simulation time.

, : : : 0.8 — . , .
sof A ] b :
A A OB} .
20} s ] =
A2
) K Vo4t B
V 0.0} 1
02} 1
2.0} 1
: 0of 1
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Fig. 5. (a) Co-conditional transmissivity field from Approach Il versus the effective transmissivity field by the direct approach.

(b) Co-conditional head field from Approach Il versus the effective head field from the direct approach. (c) Co-conditional Darcy’s

velocity field g, from Approach Il versus the effectivg,. (d) Co-conditional Darcy’s velocity field, from Approach Il versus the
effective q,.
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Finally, the inverse method based on the minimal-output- (EAR-9317009),
grant

error approach (such as Carrera and Gloripsan be used

S. Hanna, T-C. J. Yeh

USGS Grant (1434-92-G-2258) and

(ES04949) from the National Institute of

to replace our successive linear estimator in our iterative Environmental Health Sciences.

co-conditional Monte Carlo simulation algorithm.
However, the approximated co-conditiorfafield derived
from Approach | is essential to be used as the starting

field in the minimal-output-error approach. The approxi- REFERENCES

mate field is close to the correct co-conditional realization.
Thus a global minimum, instead of local minima, can be
obtained. Such an approach, in our opinion, should result in
the same co-conditional mean and variance fields as those
by Approach Il. In this way, the identity problem associated 2.

1.

with the classical minimal-output-error approach is
eliminated.
Our technique and the one developed by Kitaritare 3

conceptually identical. However, the total number of
equations solved using our technique is equal to the
number of head measurements plus one. On the other 4
hand, the method of Kitanidis requires solving a system

of equations of a size that equals the number of head
measurements plus the number of transmissivity s,
measurements.

5 CONCLUSION

Our proposed IMCS approach is an extension of that by 7.
Yehet al*° It attempts to include the non-linear relationship
betweenf and h through successive linear approximations.
A hypothetical aquifer was used to demonstrate the
ability of the approach, and we show that iterative
co-conditional Monte Carlo simulation is better than non-
iterative co-conditional Monte Carlo simulation. The 9
iterative approach can produce realizations of transmissivity
and head fields that agree with the observations at ,
measurement locations even in highly heterogeneous
aquifers under non-uniform flow conditions. In addition,

iterative co-conditional Monte Carlo simulation can yield 11-

mass-conservative co-conditional mean velocities and
mass-conservative conditional variances, which are crucial
in the stochastic analysis of solute transport
heterogeneous aquifers. Since our approach is a Monte

Carlo simulation approach, it requires significant computa- 13

tional effort. We believe this shortcoming can be overcome

in the future by the rapid advances in computing technology. 1,4
It is not our intention to demonstrate the ability of our
technique for solving real-world problems although our
approach is not limited to zero observation error. For field
problems, where measurement errors and other unknown
factors may play important roles, more theoretical develop-
ment is still needed and the ability of our iterative approach

remains to be tested.
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