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Stochastic Analysis of Unsaturated Flow in Heterogeneous Soils

1.

Statistically Isotropic Media

T-C. Jmv YER' Lynn W, GELHAR,? anD ALranN L. GUTIAHR

New Mexico Institute of Mining and Tecrmology, Socorre

Steady unsaturaied fow with vertical mean mnftltration through unoounded heierogeneous porous
media is analvzed using a perwurbadon approximation of the siochastic Jow equation which is solved by
speciral representation technitques. The hvdraulic conductivity K is celated to the capillary pressure ead
W by K = K, 2xp {—2), where K, is the saturated conductivity, aud z is a soil parameter. A general
‘ormulation s presented for the case with K, and » represented as staustically homogeneous spatial
random fields. {n part i. solutions are developed assuming x is constant and representing K| varability
by one-dimensionai and ihres-dimensionai isotropic random telds, Results are obtamed for head van-
aness and covariance funciions, effective hydraulic conductivities. vartancss of the unsarurated hydraulic
conductivity, Bux varances, and variance of pressure gradient. When the parameter z is relatively large.
corresponding to coarse textured soiis, the head vartance decrzases and all of the results demonsirate 2
rrend toward gravitationally dominated one-dimensional vertical flow. The effective conductivity is de-
sendent on che correlation scale of In K| and the mean hydraulic gradieat.

InTRODUCTION

Field observations show that the hydraunlic properties of
sotis vary significantly with spanal locarion even within a
given soil type [(Warrick and Nielsen. 1980]. For example, the
standard deviauon of the natural logarithm of saturated hyv-
drauiie conductivity has been observed 1o range from 0.3 o 3.
Quantitative information on the behavior of unsaturated fows
is based largeiy on laboratory experiments with small hom-
ogenized soil columns or on small-scale agriculturally onented
field experiments in the top few meters of soil. Such observa-
tions have established thart unsaturared How is adequately de-
scribed ar those small scales by classical continuum partral
differsntial sauations. However, imporant problems of re-
source management apd snvironmental protection, such as
eroundwater recharge prediction or waste disposal evaluation.
require quantification ar much larger scales. 2.g., hundreds of
meters or mors. A Kev guestion is how to extrapolate the
classical small-scale homoegeneous behavior to the pertinent
field scale at which the soil paramerers exhibit compiex natu-
ral heterogeneity.

The siandard czpproach to such field-scale problems has
besn 1o consiruct analytical or numerical selutiens of the
ciassical partal differentiai equations. assuming thar the pa-
rameters take on known, constant values within zones in the
maodal Although there have been major advances in numerical
solution techniques during the last decade, the standard mod-
2ling approach is severly limited by the lack of merhods for
determuning the effective large-scale parameters. Current prac-
tice s characterized by aumerical overkill with pracucally
nonexistent data. Nieisen and Biggar [1982] discuss many
limitations of the standard modeling approach in the vadose
zone =mphasizing :he need for satistical techniques which
incorporate the effects of natural variabiiity.

Statistical techniques of ireating natural varmability have
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been applied :0 unsaturated flow fe.g. Warrick, 1977; Eagle-
son, 1978. Degan and Bresier 1979; Amoozegar-Fard er al,
1982 Cordova and Bras. 1982; Bresler and Dagan, 19837, but
ail of these anaiyses presume one-dimensional vertical flow in
which the parameters are random but spatially constant in the
vertical and statistically independent in the horizontal, This
conceptual framework 15 convenient for anaiysis, but observa-
tions {e.g. Russo and Bresier, 1980; Vierg er al., 1981; Sisson
and Wierenga, 19817 indicate that sawurated hydraulic conduc-
fivity variations are correiated over horizonral distances of
tens of mewers. Also soil profiles are, of course, not vertically
homogeneous: recent data reported bv Sver and Stephens
[19837 iilustrated the thres-dimensional anisotropic character
ol soi heterogene:ty.

For saturated dow. stochastic analyses bave clearly demon-
strated the importance of the muitidimensional spatial corre-
aton swucture [eg., Gelkar, 1976; Bakr et al, 1978: Smith and
Freeze, 1979; Dagan. 1982; Gelhar and Axness, 1983). These
approaches are based on solutions of the stochastic parual
differentiai =quations which result when the hydraulic conduc-
tivity is tzken as a spatial stochasuc process or random feld.
Andersson and Shapiro [1983] present a stochastic solution of
this tvpe for one-dimensional steady vertical infiltration.
Phifip [1980] presents 2 random walk approach to unsatu-
rated flow and emphasizes the importance of the three-
dimensionality of fieid heterogeneity. Sposito {19787 explores
a different kind of statistical theory wbich does aot address
the efects of spanal variability. In this serles of papers we
treat sieady unsaturated flow of three-dimensionaily hetero-
geneous media. The overall goals are to determine the mean
or =ffective large-scaie behavior of the heterogeneous system
and the degree of variation about the mean. Following Gur-
dner [1938], the hvdraulic conductivity K is related to the
capillary pressure head v by

gl

K, x) = K x) exp (—=x9) {1}

where X, 15 the sawrated hvdraulic conductivity, and x is 2
parameter which represents the refative rate of decrease of
bydraulic conducnviry with increasing capiilary pressure head.
The parameters K, and x are measurable for small laboratory
sampies: in the feid they are :zken 0 e functions of the
spatial coordinates x,. In this analysis X, and x are repre-
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sented by three-dimensionai  statistically  homogeneous
tstanionary) random fields. The capillary pressure head is as-
sumed 10 be made up of 4 zero mean perturbation represented
bv a staustically homogensous random field and s mean
which varies slowiy relative to the correlation scales associ-
ated with K, and % A fArst-order perturbation approximation
is used in developmg amalvtical solutions via spectral repre-
sentation jechniques.

The goal is generic local relationships expressing the v vari-
ations in terms of the mean capillary pressure head field which
will vield the mean equanion describing the large-scale behav-
ior. This approach appiies only when the scale of heterogen-
ity 1s much smaller than the overall scale of the problem: this
same disparity of scale is required 10 invoke the ergodic hv-
pothesis which s implicit in the stochastic approach. Typical
vertical and horizontal correlation scales are on the order of 1
and 10 m so that the corresponding overall scale of the prob-
lem would be a minimum of 10 and 100 m. Steady Sow is
assumed as a mathemarical convenience and also to focus on
the effects of nonlinearity in the Darcy equation of unsatu-
rated flow. For the relatvely large vertical scajes which are
implicit. steadv dow is probabdly a reasonable approximation.
A specific goal of the analvsis is 10 determine the mean or
effective K — w retationship which will apply 10 2 large-scale
model of naturally heterogeneous materials.

Part 1 of this series of papers emphasizes the general formu-
lation of the problem and the solution techniques. Specific
results are developed for the case of vertical mean mfltration
when x is a deterministic constant. with a three-dimensional
statistically isotrovic and 2 one-dimensional representation of
the hydraulic conductvity variation, The mean behavior of
tne How is determined in terms of an =ffective hvdraulic con-
ductivity relationship expressed as a function of mean capil-
lary pressure. Conditions under which the flow becomes one-
dimensional are esiablished from comparisons of the variance
of capillary pressure heac.

In part 2 more general cases with variable x and statistical
anisotropy are developed. These analyses explore the ani-
sotropy of effective hydraulic conductivity for unsaturated
flow and the effect of the variability of # on the variance of
capillary pressure head In part 3 the new theoretical resuits
are compared with pertinent laboratory and field observations
which demonstrate similar behavior. Some praciical impli-
cations of the resuits are deveioped through exampies of waste
disposal appiications.

GENERAL STOCHASTIC FLOW EQUATIONS

In the following we derive the speciral relationship gzov-
erping steady infiliration in general thres-dimensional porous
media where both the saturated hvdraulic concuctivity and
the » parameter are considered to be second-order stationary
stochaslic processes. This general speciral equation is then
speciaiized 10 consider the one-dimensional and three-
dimensional isotropic cases with constant z. The more general
cases are treated in part 2.

The general three-dimensional steady Sow equation can be
WTIllen as

Fipgll
ox, !
s

= i=1

23 2)

p/ o ]
exyf

where K is ihe hyvdraulic conduciivity {assumed locally iso-
ropich. and @ = —x, — ¥ (x, directed vertically downward).
The Eipstein summanon convention is used. Expanding and
dividing by the nonzero conductivity,

{f the variables are expressed in terms of means and pertur-
bations.

v=H+h ENI=H EHR]=0 (4a)
s=Ad+a Ela]=4 Efa)=0 (4b)
inK,=F+f ElKiI=F E[1=0 (4

Then after neglecting the product of @ and k, {1} can be written
as

mMK=F+/—-AH - 4h—aH In = log, {3a)
and
InK,, = E{ln K] = F — AH (5b)
Subsutuiting {4} and (5 into (3}, the mean flow equation is
#H AF - AH) H{F — AH)EH bk
St éx. ' &x, éx;  éx,
+5{f—Ah—aH—ah}r§hzO )

6X[- C.:xl'

Subsututing (6) from (3} with F and 4 assumed constant,
vields, after neglecting products of perturbation quantities,

ATh . Ch L
e A2, = 6y o — J{J — b0

x; CX;

P

£ AE o
Y A YA P
W OX;

rouner-Stieljes 1ntegral representations [Lumiev and Pa-
nofsky, 19647 zre used (or the random processes, thar is,

Xy Xa.xs} = | e 4Z, k)

BEES

Mot
a(xl’ xh x}) = eik-x dzc(k) (8)
-
and
=
Sixy. xa, x5} = 3 %> dZ dk}
where J, = —&@/&x; is the hydrauiic gradient. x = {x,, x, x;)

is the posttion vector, and k = (k,, k,, k,) iz the wave number
vector. After substrutuion and manipuiation, the expression
relating the compiex Fourler amplitudes of 2. a, and / flucte-
ations is

dZy ={iJ k(dZ, — HdZ ) —{J J, —J))dZ]
IR+ AQRQLK, - BT (9
Finallv. multiplving both sides of (9} by the complex conju-
gate of the Fourier amplitude 4Z,, taking mean velues, and

using the spectral representation theorem produces the spec-
tral relationship

Ser = [ K041 s — 2HC o,y + HAS,) — 20 0 fd " — 1,00,

i, = I PSR + AN2T K, — k)T {10}
where @, and Co,, are the quadrature and cospectral compo-
nents of the cross-spectral density function. S,/

Equation {101 15 the spectral solution to the stochastic par-
ual differential equations governing the sweady siate three-
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dimensional Jow n unsaturated porous media. Particuiar
solutions. which depend on the type of covariance funcuon
used 1o describe the heterogeneity of the medium. will be
2valuated in the later secuons of this paper and in part 2.

GENERALIZED EFFECTIVE HYDRAULIC
ConDUCTIVITY RELATIONSHIP
The general lorm of efective hydrauiic conductivity can be
derived from the following specific discharge equation. As-
suring locai isotropy of the hydrauiic conducuvity, the Darcy
squation for a three-dimensional fiow becomes

o
g;= —K—= r{,": L+ (f—aH — ARl
8x; L
(f—aH — AhY T ch
2 COx ]
where § = §, 2, and 3. Taking expected values of {11}, dropping

terms that are bevond the second order, and noung that
EThéhiex] = {L{Q8Eh™)Ex; = 0,

/O ELf— aff — AR
E{a] = Km[kz - E af ) J)J‘-
- r

]
—E/lrwaH—{h}i 1
éx/ |

: (’_; [ —af — 4y __j _
=r(,,,L(\1 : \U. | J

A E

= K;J:-Jr‘,' {\12)

where E[{f — aH — dhéhidx) = FJ,, E(f~ Ah—aH) =
6,7+ Ao+ HYs, — 1AE[ K]~ 2HELy )+ 24AHE[ah],
and & ';}- is the Kronecker delta. Thus even though local so-
ropy s assumed in the derivaton of {12} the resulting equa-
tion orocLuces a teasonial form of the mean Darcy squation.
where K; is the sffective hyvdraulic conductivity teasor. Equa-
tion (12} w:ll be used throughout the subsequent parts of the
papers to determine the efective unsaturated hydraubic con-
ductvity in one and thres-dimensional cases.

STATISTICALLY [SOTROPIC MEDIA WITH CONSTANT %

To illusirate the effect of random In X, on the unsaturated
fow, we will assume that the heterogensous seil can be repre-
sented Dy 2 statstically isotropic randem In X field and a
deterministic (constant) = Then. §,,, Co,,, and @, vamsh in
{10) and only the covanance of the [ process is nesded 1o
evaluate the statistical properues of the flow system. The mean
flow is taken to be vertical infiltration with f, = J as the only
nonzero component of the mean hydraulic gradient.

One-Dimensional Flow

One-dimensional vertical Sow is obtained as a speciai case

of 19} by :making J.=J,=0, J, =), &k, =k and. when
2 = constant, dZ, = 0,
ik dZ .
4Z, = 2 (13)

1k + i 2 — D)
To evaluate :he head variance and covariance, we first use
an exponential function for the In K covanance function, Le..

1§1/4] {14

R;’ﬂ‘i} = G;‘; XD | —

where o7 is the vartance of /, £ is the separation distanees or
lag, and A is the correlation length. The imverse Fourter trans-
form of R, vieids the spectrum of in K,
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The spectrum S, of fluctuanons in capilary pressure head is
derived by using {13} and {15) and the Fourier ransiorm of S,
vieids R,,. 1he auteocovariance of head ifuctuations:

H

Runl$) = | 2425, (k) dke
sz"r r T o= Al _::Ilg‘{" .
e v i | I
wiere 8 = (2 — 1). The vanance of capillary pressure &,- is

obtained when ¢ i§ equal 0 zero:

. . Jie .t
7 = R0t = —— {17
8l = /,t())}
Note the head variance approaches infinity as A8 becomes
small.

An alternate form of the autocovariarce function of In K
used 0 produce a stadstically homogeneous soiution with
finite head wvariance in the stochasiic analysis of one-
dimensional, saturated groundwater Sow [Bakr er af.. 1978], is

“hole” covariance function

. 5 13} -
Redd) = *"r“[l s exp [ ~idlin] {13}
where 7 i$ the correlation length. The spectrum of In K as-
sociated wirh this autocovariance function is

26,27k

e (19)
ETgErEY (153

Sprky =
and the aurocovariance of head ilvctuations resulting from
{13 s
I 2z
ST |

| — §%n?
l_[ B

(1 — gty
— 2fne HN L 2RIple m Il ; (20}
|

where 5 = x{2f — 1). This head covariance function and the
hvdrauiic conductivity covariance funcion are graphed
Figure {. Note that the autocorreiaiion function of the soii
capillary pressure head depends sor oniy on the ratio of the
separation distance to the correlation scale of In X, as in
saturaied 3ow case [Bakr vt ul. 1978], bur also on the gradi-
ent. J. and . The corresponding head varance is

, Joaen

o= = ——— 21
T Rk (1 ~ gnp? {21}

The head varnance resulting from the cmopemial and hoie
covariancs functons are shown in Figure 2 a5 a function of 24
using # = .34 [Bakr er al, 19787,

Three-Dimensional Flow

From (10} with J &, = J&, and z = const. the spectral re-

lationship {or a three-dimeasional Jow situation is
SRSy
(= 2920 — 1%k,

Sy = (22)

Considering 2
funerton for f

simple exponential form of the autocovariance
[see Bakr er al.. 19737, namelv,

R,rﬂ%) = Gr: exp [—< 4] (22
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CORRELATION FUNCTION
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Correlation functions of head (203 for different 2n values

{solid curve) and In K, (dotad curve) (18] versus the dimensionless lag
s =1

Fig. 1.

where ¢, is the variance of In K, & = [, + &,° + £,71¥% §5
the length of the separation vector, and 4 is the integral scale.

The corresponding spectrum of In K| [ Bakr ez al., 1978] is

s - ¢ i3 24)
fr :;‘.{1 - sz_.z}:
and hence the spectrum of head fluctuatons is
Spm e (25)
PR = KPS = Bk )
where § = 2(2J — 1.

The head variance is found by integrating the spectrum (23)
over wave number spacs tsee the appendix) and is given by
B vl B S W § S I
G, = — |1 - - + — (26}
(£2) +8 1448
The head covariance funcnion for the three-dimensional case is

more complicated. but it can be obtained by taking the Fou-
rier transiorm of 5,

Rullo = 1] 550010 dk (27)
2
-
where y s the angie berwesn th., separation vector £ and the

direction of mear flow. and ¢ = [E]. Transformmg k into
spherical coordinates fellowing Bakr er al. [1978],

I
q=f= cos @ cos ¥ + sin ® sin x cos 8
‘ (28)
dk = &~ sin @ dk @ 28
and integrating over k {27) becomes
= 2 sin @ — pge 0N
Ry = CJ"i ; 7 r.1‘1
Jo=0 Jo=o i7" = I} L{b'q' -1}
b:aly":'!l {,[ - I = |t|
+—_ | df 4o (29
tbrg- — 1
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where g =k, /k, b= Bt =(Z cos 0. and € = J36 207 The
remaining integral is evaluated numerically. The result for the
head covanance function is graphed in Figure 3.

Variance of Log Unseturated Hvdraulic Conductivity

I z is assumed to be a deterministic constant, {34} can be
simplified to in K = F +~ {— «(H + k), and the corresponding
equation describing the fluctuaton of InK 1 In
K — Efln K] =f — zh. The variance of In K then can be di-
rectly obtamed by

T = E[f¥] % «*E[H*] — 22E[ fR) (30)

Tin &

In one dimension,

= | E[dZ, 4z, dk

=

E[ /]
v 5
IBSy B

_. _ ‘3 J
because {13) vields

. = s,
G- = --—fﬁ

Similarly, in three dimenstons.

dk

(= ik JS,s

Lo F Bk,

e L2
% Sep dic = § &,°

-

where (22) is used to get 5,7, Thus independsnt of the dimen-

sion and the form of the input specirum. we get

It

E(/A] dk

T=g 0+ [ = 2z Ve, (31

Cin K

Substituning (16} and {17} for the one-dimensional head vari-
ance in (31}, the variances of one-dimensional unsaturated
fiow hydraulic conductvity for a simple exponential aunto-
covariance function {14} and a hole function (18) are

000 E 7 ST T T, L I L N LU L
100 £ =
; :
of :
eI E —————————————— ;
N e z Ei
s - :
Nb_c | }E_ .".'.‘- _é
£ 3
F
ork
= k 3
C 1
Q0lE EY 4
E by 1
OOO|- PR T AT S A
DCol 00t Nell . | c 0C 1000
ak
Fig. . Comparison of the one-dimensional head varance resulis

for the exponential and hole funcuon. {37) and (214 respectively. with
i = 2.54 and the thres-dimensional head variance (26) for an isotropic
medium: J = 1.
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) A [f' - x,{fj Ji .

L TE=EFLT s = | R = D | e 0
K Z O T TS 7

[ ( AN A 1o,

Tkt = JL = :\x -3 -J.r-) ____.[1 — ;')’r“,!J:_i (325}

respecuvely.
The varmance of unsaturated hydraulic conductivity for the
threz-Gimensional model using {26} and {31} 1s

., - O 2xpN gPA
f-"!nx'=5f'[l+('-‘5”— |

5B
Foo 2o+ 1 “ o
a7 e w1 | B

Effective Unsacurated Hydraulic Conductivity

When z is a defrermimsuc constant. [rom (12), the mean
specific discharge of a one-dimensional flow case {x, ==z,
g, =4¢q. J, =J,J,=J0;=0.5ki¢x, = Chitx, = () becomes

1 _ . N _ ah
ECql ~ K| 1+ = EQj = 2] W = K E| (f — 2} =
2 ] L dz
{34
where K, =K, exp {—zf) in K;=E0n K], and

J =1+ dH/dZ is the mean hydrauiic gradient. The frst 2x-
pected value term on the right hand side of (34} is simpiy the
variance of the logarithm of the unsaturated hydrauiic con-
ductivity, 6, > The second expecred value in {34 can be
determined by noting ELAdh/dzT = 0 for any stationary pro-
czss and by using

CoaR) 7
E' p—
7]

i

— kE(dZ,* dZ,) 4R

- 4 _J,.‘.
= | (o
LR S;rdk
SR
=t | lieETE e

CORRELATION FUNCTION

-2.5 "
2 5 12 15 20
£/
Fig. 3. Correlation funcrion (29 of three-dimensionai head per-

turbations at different angles from the mean dow (solid and dashed
curves) compared with that of ln &, {doued curvesi: 7 = 1.

4
Cn

= —JL(;;.‘: —_— 7_H“ﬂ|
for any input spectrum S, . Thus

. JIB A

- 2 ! Y Y i
f - ¢ e M
:‘a‘[.'r:K 1_;_L :'_;..[ - *'8 ’
LU ;v e 4 N - ! -
- I

, . . 35
o] = K lr-| __G-_"“F‘ '_I{IN-’- ﬂ\ _...bj..j_"r“_
i ml_ z il_‘ ]I'\‘\ J /l I:l + Brf')l

AL+ 28m7]
—_— .\I ‘{8”):}}:&2

for the sxponential and the hole function covariances, respec-
tively.
The right-hand side of (35). K,, muiuplied by J, the mean
kydraulic gradient, produces the mean moisture flux or specif-
ic discharge. Note K, generally cepends on the mean hy-
draulic gradient. i.e., the mean Darcy equation is nonlinear.
When J =1, (§ =a(2J — 1} = z), {35) implies a relationship
berween the mean infiltraton rate and the mean capiliary
pressure. Sincs K, = Kg 2xp (—=xH) and K; = exp £[In K],
the geometric mean of the sawrated hvdraulic conductivity,
the stfactive conductvity of the unsaruraied fow reduces 1o

K. = Kge™* El— 7r —‘

T 36a)
:“ - If._}_] {
Using the relationships in (324} with J = 1. this can be ex-
pressed in terms of o, .2 as

K, =Kge ™ | —
|

{368}

Equanon {36b) represents the mean or sfiective conductivity-
capillary pressure refationship for sweady verrical infiltration
through a perfectly stratified heterogeneous soil of unbounded
vertical extent.

Note that if o7 T2(1 + %)) > 1. K, becomes negative. This
unreasonable resuit occurs because higher order terms are ne-
glected in (12) and (7). For the saturated Sow case, Guijair et
al.. [1978] found an 18% error in this type of first order
approximation for one-dimensional flow perpendicuiar to lay-
ering with a lognormaily distributed X and ¢,° = L. For the
unsarturated Sow case, the srror due to the approximation
depends on o7, = and 4 for J = 1. The magnitude of ¢ -*/[2(1
+ 23] is ilkely to be greater than ! for some soiis. One
possible way 10 extrapciate to these relationships to large o, is
to copsider the quaniities in brackers in (33) and {36) as the
fitst two terms of the Taylor series expansion for € as pro-
posed by Gelhar and Axness [1983]; then X, becomes

K, = Kgexp { —2A — e, /U1 + 207} (37
The more general formula (35) in which J i5 not restricted 1o
be !.then can be expressed as

- G:'- s , 2:8\ Jl'_
K,=K;exp| —:rH*.'-‘Tr; I :—[r—_r'_}__’_
L 2L\ J L8

2
—_ 13
1+ ;.31 l (38)
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Fig. 4. Raiio of the effective hydraulic conductivities (39} and {43)

10 the geometric mean of unsaturated hydraulic conductivity, K, =
Kgexp (—z2f): 2. = 0 corresponds 10 saturated fow.

The same exponential generalization for the hole covariance
function yieids

¢t 27 A S
K,=Kgaxp| —aH + = |1 +ig = —_—
¢ E [ (1 + S

- l\ ‘]/J

201 + 28m .
R {39)
{1+ fni” ]

A similar analysis is carried out for the three-dimsnsionai
case. The procedure is identical 10 that of the one-dimensional
case aithough the integrations are more involved. If the mean

gradient exists only in the x, direction, the mean Darcy flux
{12} 1n this direction takes the form -

1?7

L EMS
Elg,] = KMLI + —~‘—2~—-—JJ1 = EI {f — xhy TJ (40)

where E[(f— 2] = oy, % Since the covariance of o and
éhfdh, is zero, the last term of the right band side of {40} can
be determined as follows:

_ —=Jyo 2t f'”{k k2B dL, dk, dk,

il

+ k) 2BNKRE £ 1P

g2 2ln |l =¥ 1 17
Elfii=to,7 1= (1 - . —- {41
»l ¥ I +y P=y
where » = 4ff (detaiis of this integration are given in the work

by Yeh [1982]). Thus the effective hvdraulic conductivity for
the three-dimensional flow case is
3 i)
am”  E[]
[ ] - — i X tnk .
ELC}IJ,*I=J{8=KG€‘::(1-.—T.—J_J! (42}
L = v
Assuming J; = [ and using the exponential approach given
by {37} and (42} resuits in
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r L Il = Ax) 1 3
KL.—KchpI—xH—i—cr"r ( - - —— — i —
L Sl ) H1 = 2ip )T
1 4o {1l = i} 1

R :,:_}:B (3)

This equation describes the effective hydraulic conductivity in
a three-dimensionai sicady state wmfiitration in statisticaily iso-
LTODIC unsaturated poraRs meaia.

Figure 4 shows the effective hvdrauiic conductivites {35}
and (43} of the one- and thrwdimensional models as a func-
non of the magnitude of the G, . Note thar the effective hy-
drauiic conductivity aiso depends on the meaxn gradient.

Flux Variance

Subtracting (40 from (11} and negiecting the higher-order
terms. the equarnion describing the perturbation of the fiux is
of the form

’~Kli](f—xn (44}

cx

Il the perturbed term in {44) is represenied by the stochastic
Fourier-Stieltjes integral, the relationship among the Fourier
ampiitudes of the perturbations ¢,", . and h is

dZ,. =K [JdZ, — (2] — ik} dZ,] {(45)
and the corresponding spectral reiationship is
S = K35y, — 22/ Re {§,,] + 2J Re (5]
(et = kST (46)

where Re denotes the real part of the spectrum. The variance
of g," can be obtamned by integrating (46} over wave number
with the specified covariance function for the J process, (23)
The resulting variance of 4, " is

v s 3 5 2 5
o, =K, a, J"f\\l TR T T
Jn(l«;).ﬁ)“_ .6 1; 2
GHY L B LB+ )
1 I3 = 2)

TR+ AR (ABY

2In{t = if) !
|1 - - A - {47)
A 1+ 4p
1O E Ty T T
= 3
I i
e cl/KkE of =
I 2 _-'-"""-—,, 2
- Ca,7 g, . .
iairatrerate :
B UE"?/K"‘UF T i
.O[;.- ~ N =
3 N3
IOO' AR T R T | ST L
Nelel .0t A i 0 Helal

ah

Comparison of normalized longiudinal and transverse flux
variances of the thres-dimensionzl fows: J =

Fig. 5.
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Fig. & Comparison of one- and three-dimensional gradient van-
ances, (38} and (35), respecuvely: n = 254 F = L

The variance of Jux perpendicular to the mean gradient J, s
evaluared as follows:

. Gh
.w.- - K e{f—-zm
1z " R
) . ch ch
= (L= —+ ) = =K. 3 i48)
X TXs

0 first order in perturbations. The corresponding spectral re-
iationship of perturbauons of g, and & is of the form
S = Km:{kllski:}

242 {49)
The variance of 4. 1s obtained by integraung (49) over wave
number space, with the result

. KRt [ 6 3 2001

G 8P B 248

a2 -

L =anl, 6 Tl 50)
i ' {A.BFJ v

To demonstrate the effects of x4 on the resuits. &, 2, and c;',!,:2
are evaluated as a function of x4 for the case of / = | and are
dispiayed in Figure 5. Note that for small 24 the ratie o,%/
T, i § the sawurated flow value. For large xi. reflecting
unsaturated flow eilects, ihis ratio decreases; this trend of de-
creasing transverse fow vartation shows the tendency toward

one-dimensional flow.

Varignce of Pressure Gradien:

In analvses of infiltration and drainage. it is often agsumed
:bat capillary pressure gragient is negligible tunit hydraulic
gradient). One may question the validity of this assumption.
sspecially in soils exhibiting a large degree of spatial vanation.
The evaluation of pressure gradient varfadon through this
theoreticai analysis provides a2 gquantitative estimate of the
variation of the pressure gradient in a heterogensous 501

For one-dimensional fow the Fourter amplitude relation-
ships between pressure gradient j = dh/dz and pressure head 13
mven as

dZ; = ik dZ, (31)

Multiplving (31} by its complex conjugate and then taking i
expecied vaiue resuits in the spectral reiationship.
(33

To evaiuate the variance of the j process. 'is specirum is inte-
grated. For exponential covariance function. using | 15%

. Jiz .t .
ey .33)
’ AP~ A5
and for the hole function. (19),
s Jiz }
70 = m— {54}
! i1+ 3m-

Similariv. the variance of the pressure gradient resulting
from the three-dimensioaal model can be evaluated [see Yeh,
19827 as

(55)

where v = .8 These results are ilusirated graphically in
Figure &.

Discussion 0ofF THE RESULTS

Figure 2 shows the normatized head variance at J = | as a
function of the product x4 To compare the etfect of the In K|
covariance {uncions, the length scale # of the hole function m
the one-dimensional case s taken to be 7 = 2,34, where 4 15
the correlauon scale of the simpie exporvential [Bakr er ol
19787, Physicaily, z7* can be considerad as the thickness of
the capiilary {ringe. Tvpical ranges for ™" and + [see Bouwer,
1964, 1978: Bakr, 1976] are 0.2-2 m for both paramerers;
therefore the practical range of x4 would be from 0.1 0 10.
Figure 2 shows thar. at the upper end of this range, the two
one-dimensionzal input covanance functions. the exponsatial
and the hoie funcuon. produce pracucally the same head vari-
ance. For a small value of «4 the head variance resuiting from
the exponential function approaches infinity as indicated by
the one 10 one siope of the curve. whereas the hoie function
oroduces a finte head variance. In addition. the head wvari-
apces obtained from :he two inpur functions at the Iimit
[z—- O} are consistent with that of saturated How [see Bakr er
ai.. 1978]. For x =0 (A = a =0} the How equation {7) |or
equation (13} for one-dimensional fow) is equivaient to the
saturated Jow case of Bakr er ai. [1978].

The effect of large x4 can be interpreted in terms of the
governing one-dimensional steady siate infiltration eguation
ifrom esquation {7} for this special case) sxpressed in terms of
capillary pressure head and log saturated conductivity pertur-
baoions
dH df

d=ir

This equation ¢can be compared :0 the horizontai absorpiion
Case

{37)

- dzods dz Wz

The additional term on the lefi-hand side of {38) represents the
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gravity 1erm consisting of the effects of the hydraulic conduc-
tivitv and the capillary pressure head perturbadon gradients.
The relationship berween head variance and =z becomes evi-
dent. When x becormes large. the sffect due to the variation in
saturated conductivity s significantly reduced by the head
perturbation gradient, which is amplified by the magnitude «.
In other words, the gravity term becomes dominant and the
head variance 15 reduced.

The reducnor of head variance ar large value of 22 can be
further elaborated through a “conditional analysis.” Assume
that soil formation is composed of a collection of soil coiumns
for which the interacuion betwsen columns is neglected. Each
individual column is assumed to be homogeneous and Darcy
equation for sach column is

;o
g K| 2+ 1)
\ dz J
For an unbounded column dy/dz = 0 and
g=Ki)=Ke ™™

This equarion yields the expression for the soil capillary pres-
sure head

and if the fiux is taken to be a specified {deterministic} con-
stant, the variance of capiliary pressure head is of the form
x @y :

gyt = p:
Note that the head varience in the 2bove equation is a result
of vartations i saturated hydraulic conductivities among soil
columns, since ezch column is homogeneous, and the corre-
lation scale of the saturated hydrauiic conductvity of each
column 15 Infinize.

This same result 15 found from the stochastic analysis, (17),
when fi=aix» | with J = 1: however. this case could also
be interpreted as one with fixed i much smaller than the
overall scale of the problem and x4 large because of the soil
type. Both interpretations demonsirale the head variance re-
duction when =z is large. Note that when 4 » 1 the stochastic
result, (17), shows the head variance is independent of the
correlation scale. This behavior is in contrast to the saturared
flow case where the head variance increases as 4 [Bakr ez al.,
1978].

The one-dimensional solutions for both the exponendal and
the hoie covariance are seen to vield finite variance, stationary
head solutions when « is nonzerc. This is in contrast to the
saturated flow situation where the stationarity occurs only for
hole covariances {Gutjahr and Gethar, 1981]. Stationary be-
havior was ailso {ound for one-dimenstonal unsaturated flow
by Andersson and Shapiro [1983]: they also showed good
agreement between a perturbation solution in the space
domain and Monte Carlo simulatiens even with relanively
iarge variability of the saturated hydraulic conductivity.

Figure 2 aiso shows that the head variance derived from the
three-dimensionai modei approaches the saturated flow result
as zs approaches zero. For targe values of «/, the one- and
three-dimensicnal results are identical. indicating that the fiow
is predommanily one-dimensional under this condition.
Therefore the one-dimensional result may be appropriare for
some field applications, especially for coarse-textured soils

which generally are associated with large values of z. For
fine-textured materials such as clay and siit, which are often
characierized by small vaiues of 2. the one-dimensional results
may not be appropriate. The three-dimensional analysis pro-
duces 4 smailer head variance in these tvpes of soils. Hence for
fine-textured soiis, significant errors couid be introduced if
results {rom a one-dimensional model are used to draw a
conclusion about the effects of field beterogeneny.

The head covarance functions resulting from the one-
dimensional anajysis are shown in Figure {. This fgure dem-
onstrates that the mathemarical filtering effect 15 diractly relat-
ed 1o the magnitude of .. When «~ is small. the head pertur-
barions wend to be correlated over a large distance. Converse-
iy, the output covariance function tends to have the same
correlation length scale as that of the input covariance when
x4 1§ large.

In Figure 3 the head covanance functon of the three-
dimensional model is evaluated for several different values of
the angle y and 2+ The head perturbation in this case is
anisotropic, even though the input log sarurated hydraulic
conductivity perturbation is isotropic. The perturbations of
the head process in the direction perpendicular to the mean
fdow (y = x/2} have consistently higher corrzlation values than
in the direction parallel to the mean flow, particuiarly for
small vaiues of xi. Howeves, the difference between the corre-
lation values in the two directions diminishes as x. becomes
large. Furthermore, the fluctuations in head in the direction
paraliel to the mean fow direction tend o exhibit the hole
effect at large a4 vaiues, when the exponential covariance
funcdon is used. This further confirms the finding that the
infiltration process in coarse-textured soiis is simply a one-
dimensional pbenomenon. Conversely, I fine-textured soiis.
water will dissipate laterally in response to the lateral head
perturbation gradient and the process becomes three-
dimensional.

The variance of log-unsaturated hvdraulic conductivity as
indicated by (32} and (33) is found to decrease with i8. This is
consistent with the previous finding on head variance in un-
saturated flow.

The above interpretations are straightiorward for the case
of vertical mean infiltration in an unbounded region because
the mean hvdraulic gradient is constant (J; = 1} in that case.
However, for bounded cases, such as iflow approaching a
water table, the mean gradient is not constant. and the appli-
cability of the local-stationarity assumption will be restricted
to situation where the mean gradient varies slowly over a
correfation scale. The scaie of vanation of the mean solution
will be of order 2~ ' and local stationarity can be expected
oniy if 2« a”’. As a consequence, the stationary results are
not expected to be valid for o/ » | when J is not constant.

The effective hvdrauvlic conductivities deterrmined from the
one- and three-dimensional models are shown graphically in
Figure 4. It 15 seen that the effective hydraulic conductivinies
approach the one- and three-dimensionai saturaied fiow lHmits
found by Guijahr ot al. [19787 as o) bezomes small In addi-
tion, they are bounded by the harmonic and arithmetic means
of the saturated hvdrawlic conductivites. Note also that for
large x4 both one- and thres-dimensional effective hydraulic
conductivities approach Kge™ ™. The effective saturated con-
ductivity 1s simply the geometric mean under this condirion.
For small o/ the trends in Figure 4 can be thought of simply
as the multipiier of geometric mean required to vield the ef-
fective saturated conductivity; for the thres-dimensional case
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the muitipiier is greater than one and for one-dimensional
flow it is less than one.

Az expected, the variance of the Qux i the lateral direction
dimimshes relative to that in the direction of the mean dow as
% becomes large (Figure 3. This is also an indicauon of the
deminance of gravitational Sow in coarse-textured soil.

The vartaton of pressure gradient aiso can be related to x4
is illustrated in Figure 6. For small ». the one-dimensionai
anaiysis produces z variance of J's.® and the three-
dimensionai analysis results in o smaller capillary pressure
gradient variation which is ¢ of the one-dimensionai resuit. As
the value of =4 increases, the variance resuiting from one-
dimmensional analysis decreases more rapidly than that of the
three dimensional case. These results indicate the assumption
of a unit hydrauviic gradieat may be reasonable for coarse
textured scils with a large x4 put will be questionable for soil
with a smail x4

APPENDIX: EVALUATION OF HEAD
VARIANCE 7, [N (33)

This appendix describes the integration procedures used in
obtaining the head variance sxpression given in {26). The same
approach was also used to evaluate other integrals necessary
1o determine other variance and covariance terms in this part

of the paper. Details of these integration procedures are given
by { Yehn, 19827,

To obtain the head vanance, one integrates the spectrum of
the head fuctuarion given in i25), which is written as {ollows:

. Jig 2 T &, dke, dk. dk,
T TR T

-

(Al)

Expressing &, {i = 1. X and J} by the {ollowing spherical coor-
dinates. &, =k cos ®, &, = & sin ® sin &, &y = & sin © cos &,
and letting : =cos ¢ and mregrating over @, the resulting
integrand i3

&2t di dr
k= AN - B

4%, ?

"'1 ~x

{AD)

-
A Jo

v

By letung I = fr. and inegrating (A2) over v partial frac-

non, (A2) can be reduced o
Jie 2 TR viay

B =P )

The intsgration over V will result in the expression for the
head variance given in {26).
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Correction to “Stochastic Analysis of Unsaturated Flow in Heterogeneous
Soils, 1 and 2,”” By T.-C. J. Yeh,
L. W. Gelhar, and A. L. Gutjahr

In the paper “Stochastic Analysis of Unsaturated Flow in
Heterogeneous Soils, 1 and 2” by T. C. Yeh ct al. {Water
Resources Research, 21(4), 447-456 and 457-464, 1985), an
important correction in some equations has been noticed.

The statement right after equation (4¢) on p. 448, “Then
after neglecting the product of @ and A ...” should be deleted.
Equation (5a) ought to be

InK=F+f—Ah— aH — ah
and (5b) is

In = log, (5a)

In K,, = E[ln K] = F — AH — E[ah] (5h)

in addition, equation (11) should be written as

g, = —K gﬁ‘i = exp(F — AH)[l +{f—aH — Ak — ah)

i

+(f#aH——Ah—ah)2+._.:Hiji+£fi_:l

2 o B

i
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Note that the effects of the additional term E[ah] are incor-
porated in subsequent equations simply by expressing K, as
in the corrected (5b). This additional term is nonzero only for
the variable o case (part 2), in which case the required E[ah] is
given in Table 1. This correction does not affect the ani-
sotropy ratio calculations in part 3 because it is an isotropic
effect.

In equation (6a), on p. 458, >0 should be >0,

In equation (6), on p. 458, <0 should be <0. And if [p*g?
— 4p® — 1)] = O where a = p?g and b = 2p* — 1}.

oy = J %024 % p*/[3ala + b)*b*]

In Table 1, on p. 461, the E[gj,] for case 2 should be
positive, and, on the first line, 5, should be replaced by ¢,

{Received November 18, 1985}





