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Sequential kriging and cokriging:
Two powerful geostatistical approaches

J. A. Vargas-Guzman, T.-C. Jim Yeh

Abstract. A sequential linear estimator is developed in this study to
progressively incorporate new or different spatial data sets into the estimation. It
begins with a classical linear estimator (i.e., kriging or cokriging) to estimate
means conditioned to a given observed data set. When an additional data set
becomes available, the sequential estimator improves the previous estimate by
using linearly weighted sums of differences between the new data set and previous
estimates at sample locations. Like the classical linear estimator, the weights used
in the sequential linear estimator are derived from a system of equations that
contains covariances and cross-covariances between sample locations and the
location where the estimate is to be made. However, the covariances and cross-
covariances are conditioned upon the previous data sets.

The sequential estimator is shown to produce the best, unbiased linear esti-
mate, and to provide the same estimates and variances as classic simple kriging or
cokriging with the simultaneous use of the entire data set. However, by using data
sets sequentially, this new algorithm alleviates numerical difficulties associated
with the classical kriging or cokriging techniques when a large amount of data are
used. It also provides a new way to incorporate additional information into a
previous estimation.

Key words: Sequential linear estimator, successive linear estimator, conditional
covariance, interpolation with large data sets.

1

Introduction

During the last decades, kriging and cokriging techniques have been applied
extensively to many studies of subsurface hydrology. For instance, Kitanidis and
Vomvoris (1983), and Hoeksema and Kitanidis (1984) applied cokriging tech-
nique to one- and two-dimensional saturated, steady flow problems for estimating
hydraulic conductivity of geological media. Using cokriging, Yates and Warrick
(1987) utilized soil temperature to estimate the spatial distribution of moisture
content in the subsurface. Sun and Yeh (1992) extended the method to estimate
conductivity using information on hydraulic head under transient saturated flow
conditions. Harter and Yeh (1996) used the cokriging technique to investigate
effects of conditioning using head and conductivity measurements on solute
transport in the vadose zone. The same technique was also employed by Yeh and
Zhang (1996) to estimate parameters of unsaturated conductivity based on
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moisture content and head measurements. Tong (1996) applied cokriging to
estimate the saturated conductivity of geological media using tracer concentration
measurements. Harvey and Gorelick (1995) developed a sequential approach for
cokriging in which information such as head and solute arrival time was used
consecutively to improve the estimates of the heterogeneous conductivity field. Li
(1998) used a sequential approach to cokrige the saturated conductivity of geo-
logical media using some conductivity data first then the tracer concentration
measurements. On the other hand, Yeh et al. (1995 and 1996) proposed iterative
cokriging techniques for nonlinear systems in which the requirement of un-
biasness and minimum variance were imposed in each iteration. This iterative
approach was further extended to unsaturated flow by Zhang and Yeh (1997) to
estimate parameters for unsaturated hydraulic conductivity in the vadose zone.
Similarly, a quasi-linear geostatistical approach was presented by Kitanidis (1995)
in an attempt to incorporate the nonlinear relationship between the parameter
and secondary information of the subsurface flow system.

Despite their popularity, kriging and cokriging with large data sets can be a
non-trivial problem because of numerical instabilities associated with solving large
systems of equations (Davis and Grivet, 1984, Dietrich and Newsam, 1989). Davis
(1975) introduced an alternative called “moving or local neighborhood kriging”
which is a circular or elliptic moving window that allows to krige a central point
using only the data within such a local neighborhood. As mentioned by Davis and
Culhane (1984), local neighborhoods produce an effect of spurious behavior in the
estimates. They also proposed an alternative that uses the covariance instead of the
variogram and rearranges rows and columns in the kriging matrix to yield a
symmetrically banded kriging matrix that is easier to invert. Nevertheless, such an
approach still deals with large matrices and has the disadvantage that the problem
is not entirely solved if the range of spatial correlation is very large.

In this paper, we present a sequential approach that resolves the numerical
difficulties associated with interpolation with large data sets, using kriging or
cokriging. Such a new approach allows us to incorporate a small group of data at
a time or sequentially during the estimation. Therefore, our new approach is
expected to be very useful for solving many problems in hydrology that require
estimation with large amount of data or that require integration of many different
types of information in both time and space. While the key of sequential kriging
and cokriging is the successive linear estimation empirically introduced by Yeh
et al. (1996), our objectives here are to provide the theory for sequential kriging
and cokriging and to prove their validity.

2
Background

2.1

The successive estimator for non linearity

While applying a geostatistical approach (i.e., cokriging) to inverse problems in
subsurface hydrology, Gutjahr et al. (1994) and Yeh et al. (1995, 1996) recognized
the linear predictor nature of cokriging and the nonlinear relationship between
hydrologic properties and response of the subsurface. To allow the geostatistical
approach to consider the nonlinearity, Yeh et al. (1996) introduced a successive
linear estimator of the form

fr(x0) = f7(x0) + Y @ Ab(x;) (1)

j=1
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where {1 is the conductivity estimate at r + 1 iteration, and f (") is the estimate
at the rev1ous iteration, r, and Ah(x;) is the residual between the predicted head

(i.e., D (x;) = G[f™ (xj )] where G represents the flow equation) and the ob-
served head at location j. That is,
Ah(x;) = h(x;) — b (x;) = h(x;) — G(f" (x7)) (2)

when 7 = 1, f(") is the classical cokriging estimate based on some f and h mea-
surements, and weights derived from cokriging equations that involve covariance
of h and f and their cross-covariance. Once the iteration (r > 1), the successive
linear estimator solves a system of equations similar to that in the classical
cokriging to determine the weights, @/"'. However, it uses the covariance and
cross-covariance of h and f conditioned to their previous estimates in the system
of equations, instead of unconditional covariances. In other words, the successive
linear estimation approach propagates conditional mean and covariances during
each iteration.

The successive linear estimator propagates conditional moments to incorpo-
rate the nonlinear relationship between h and f. The concept of moment prop-
agation can also be applied to space or time domains to reduce the size of kriging
system of equations or to incorporate new data sets - sequential kriging or
cokriging.

2.2

Estimation by simple kriging

Consider a spatial random field, Z(x), which is second-order stationary and as-
sume values of the random field are known at sample locations xi, ..., x,. The
best unbiased linear estimator for the value of z(x,) at some location x,, using all
the samples simultaneously is given by the well-known classic simple kriging
estimator set (e.g., Journel and Huijbregts, 1978). That is,

2(x,) = N'Z (3)

where % is the vector of kriging weights and the vector Z represents the data at
sample locations xi,...,x,.

Before developing the sequential kriging theory, we will discuss the classic
simultaneous simple kriging expressed in terms of partitioned matrices. This
result will be useful for comparing the classical kriging to our sequential ap-
proach. Suppose we split the data into two sets: Z, and Z. That is,

2]
Z, .
zZ = : —|*
= | |- |2] (@)
Zs—1
Zg

The simultaneous simple kriging estimator of Eq. (3) can be written as follows:

2(x,) = [APO] Zp + [XSO]TES (5)

The system of kriging equations for determining the weights in the equation is
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szkzo - E’zo (6)

where

_ | Cpp  Cps
Cpy = 7
= [Csp Css:| ( )
and
o Cpo
o= | 2] )

Then, the solution to the kriging system is

7ipo :{Cpp CPS]IFPO} (9)

}\,50 Csp css Eso
From basic matrix theory, the inverse of a square, non-singular partitioned
matrix is
T epp — cpscitesy) —c  eps[Css — Cop€lps] !
Cop Cps _ 174 Pstss -sp pp Cpsibss spCpp Cps
¢y C T = esplepy — epseites] [css — Copcicps] !
P 58 ss CsplCpp — CpsCss Csp Css — CspCpp Cps

(10)

Therefore, the classical simple kriging estimator following Eq. (4) expressed in a
partition form for two data sets is

~ _ 1o _ _ 1o \T—
2(x0) = ([cpp — €ps€is €spl " Cpo — €5p CpslCss — CpCpp Sps] ' €r0) ' Zp

+ ([ess — cspc;plcps]flao — ¢ eoplepp — cpsc;lcsp]flEp,,)TZs (11)
and the estimation variance var(Az(x,)) is

var(Az(x,)) = [po] " Cpphpo -+ 2[Xpo] " Cpshso — 2[Xpo] "Ero

+ [Xso]TcssXso - z[xso]Tzso + Coo (12)
3
Theory
3.4

The sequential kriging estimator

To avoid the simultaneous usage of the large number of samples, our sequential
estimator will partition the data into subsets. For instance, the data set, Z, is
partitioned into s subsets as Eq. (4). Hereafter, subscripts denote the data sets or
spatial locations and superscripts denote the steps in the sequential approach
described in the following sections. Instead of using all the s subsets simulta-
neously, our sequential estimator estimates, z(x,), at some location x, in s steps,
in vector form, that is
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20(x,) = £ (x) + 807 (7~ 27) (13

where @ are the kriging weights for the residuals of the new data included at step
r. The vector estimate at new data locations from previous step is denoted by
2’2571). Following Eq. (13), the sequential estimator at any step is the previous
estimate plus the contribution from the new data set.

This sequential estimator of Eq. (13) can be analyzed at any step in terms of
the classic simultaneous simple kriging. For example, consider the partition in
Eq. (4), then at the last sequential kriging step in Eq. (13) the estimate from the
previous step is equivalent to the simultaneous kriging estimate when only Z, is
utilized as follows:

257 (x,) = [6,0)"2, (14)

where the “old” data vector Z, represents the data set up to step s — 1 and weights
0,, are the simultaneous kriging V\ce(:igh)ts associated with the data vector Z, and the
=>(s—1

location x,. similarly, the term, z; "/, in Eq. (13) can be expressed as

27V(x,) = [0,5] ', (15)

where 0, is the weights matrix for estimating the subset Z, at new data locations
using the old data set, Z,. Application of Eqs. (14) and (15) to the last step of the
sequential kriging estimator of Eq. (13) leads to

29(x0) = [60]"Zp + [ (Z — [Bps] sz) (16)

_[6(5)]T[eps} T] ZP + [ﬁ'j(s)]TZs (17)

Comparing Eq. (17) to Eq. (5) leads to
B = X, (18)

We will prove in Sect. 3.3 that the weights &) of the last sequential step s are the
same as the corresponding (sub)vector of weights A, of the simultaneous simple
kriging. Now, drop out the data Z; from the whole data set, so one step before the
available data vector Z, is



=T =] (19

We now apply the same analysis as before. The simultaneous kriging estimate is
equivalent to the updated estimate at the s — 1 step in the sequential approach. In
a form analogous to Eq. (17), the result is

As— 3 S(s— 3 . (s 11T = 421
270 0) = ol = 18] sl 2 + BV 2y (20)

From Egs. (14) and (19) we have

< 6
B = | T
? le(sl)o]

and applying Eq. (18) to the case of the estimator in Eq. (20) implies

6(571)0 o)) (21)

The same analysis can be applied for a previous step. This gives

o) (22)

§(572)0

Notice that every time data are dropped out of the system, a new system of kriging
equations can be solved. Eventually, the first vector of data Z; is reached after
continuing backward, dropping the sets of data. Sequential kriging is opposite to
this backward step analysis. As soon will be apparent, the whole analysis for a
large number of successive steps is not needed. The development of the subse-
quent theory only needs to consider a partition of the data into two sets: the old
or previous data at given locations and the new or additional data set at different
locations. Extension to the sequential approach will be made by using this
backward step analysis.

3.2,

Derivation of the sequential kriging equations

As shown in Egs. (17) and (20) at any stage of the sequential approach, the
estimator can be split into two parts: one associated with the old data Z,, and the
second which corresponds to an additional or new data set Z;. Utilizing Eqgs. (12)
and (17), the variance of the estimate can be written as

var(Az(x,)) = [0, — B5,00]cyp[07, — BLOL]" + 2[07, — BT, 07 ]cpeio

$0 ' ps S0 ps sops
—2[0], — B0 1cp0 + [Bro] " CestBo — 2[Fso] Eoo + Coo (23)

After a few operations, Eq. (23) can be expressed as
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s0 ps
+ mmepscppepsmm + 29 oCpsTso — ZESUOPScpSﬁr’SO
ST =
_ 29 oCpo + ZmSOGPSCPO + m »CssBso — 2B, Cso + Coo (24)
where ¢,p, ¢ and ¢, are the covariance matrices between pairs of point random
variables of the previous and additional data. E’po, ¢, and c,, are the covariances

with respect to the estimated point location. Differentiating Eq. (24) with respect
to the weights 0,, and setting the result equal to zero leads to a first kriging:

Notice that the following condition,

0% (var(Az(x,)))

- >0 (26)
2
082,

assures that the estimation minimizes the previous estimation variance.
Differentiating (24) with respect to the other set of weights, @,,, and letting the
result equal to zero, we obtain

- égscppepo 9 cppepa + 20 cppepswso + 2c GPO 46 cpswso
+20,Cp0 + 25T — 285 = 0 (27)

After rearrangement, Eq. (28) can be rewritten as:
[Zégscppéps — 49 Cps 1 2C55| By = 29p5cpp9po 2‘3;59170 — 29 oo + 200 (28)

From solving Eq. (25) for estimating the locations s using the previous data, recall

0ps = cpp Cps- Then, Eq. (28) can be expressed as:

[Css 9 Cps]wso = [Cso e Cpo] (29)
and in more abbreviated form is
éssﬁj‘so == gso (30)

where &, denotes the conditional covariance matrix for residuals of the new data,
ie.,

€5 = [Css - égscps] (31)

and &, represents the conditional covariance vector for the residuals of the new
data respect to the residuals at the location to be estimated. That is,

€0 = [Coo — égscpo] (32)



From the previous estimation the matrix éps = cljplcps, this leads to

éss == [Css - CZ;S [Cgpl]TCps] (33)
and
5so == [Eso - C‘Z;S [c;pl]TEpo] (34)

Thus, following Eq. (30). the kriging weights from the sequential approach can be

expressed as
1T

pelpp ]

6350 = [Css - p

—1r= Tr.—11T=
Cps] (G0 — cps[cpp] Cpol (35)
This result will allow us to find a link between the classic simultaneous simple
kriging and the sequential kriging.

Moreover, the second order derivative is written as:

0% (var(Az(x,))) - -
Tﬁo == ZG;SCPS - 4e§SCP5 + ZCSS (36)

From Egs. (31) and (36), we realize that the condition ||cs|| > ||€s|| must be met
to get a minimal estimation variance.

At this point, we have derived a conditional kriging system, given by Eq. (30)
and the residuals conditional covariances of Eqs. (31) and (32). The above results
may be generalized by considering any two steps r and r + 1 in the sequential
approach. 2

Moreover, the whole data set at step r + 1 is Z = [_, P ] which following

Egs. (4) and (19) also can be written as Zgri
Zg

Z=| Zs (37)
Zsr+1

From Eq. (20) and the derivation of conditional kriging above, the residual
conditional covariance for a couple of locations (x;, x;) at step r is

e = e — 8354 (38)

and from Eq. (32) at the next step r 4 1, this is

+1_ ol z
e;" = [cij — 0,iCp)] (39)
where p implies the estimation is made with all available data prior to step r + 1,
and g implies the estimation is made with all available data prior to step r. The
new information at step r + 1 is Zy+1. Due to the partitioning, we can write

Eq. (39) as:

- T
0L | ¢y
SZ;_I = Cij — [_ﬂl ] |:_ﬂ].:| (40)
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Replacing the weights by the sequential weights according to Eq. (20) yields,

- T
T _ a7 gl =
et = e — %qi &g [f‘”] (41)
4 Bl Cs'j
Developing the product, we get
r+1 __ ol = T =
ey =cj— Sqicqj — w |:Csr 9 } (42)

which sequentially leads to an updated residual conditional covariance

gfjﬂ =g — E’Z:iggrj (43)
This finding allows generalizing conditional residual kriging to a sequential ap-
proach in which the variance is minimized by successive steps. The condition to
minimize the estimation variance, expressed above, is also generalized as
251 = [[z5

Equation (25) gives the kriging system for the first step and Eq. (30) is used in
all successive steps using updated conditional covariances given by Eq. (43). The
next equations represent this new explicit form of kriging

1 =21 _ =
Cppmso - Cpa

= =r  __zr
EhgWyo = £y

ér+1 6r+l _ gr+1 (44)
srtlgril Wertlg = Sortlg

=S 25 =S

Sssmso - 8so

The assumption made in the form of the estimator in Egs. (17) and (20) are
justified by results in the following section which prove that results obtained by
this new approach give the same results as simultaneous simple global kriging.

33
Equivalence between classic simple kriging and sequential kriging
In this section, we will demonstrate that the sequential kriging estimator and the
simple kriging estimator both produce the same estimate.
The simple kriging estimator from the partitioned matrix in Eq. (11) is

o — -1, - -
chassic(xo) = ([Cpp - Cpscsslcsp] Cpo C cps [Css csp Cps} lcso)sz

S - 11l \To
+ ([ess — €5pcyy s B — €l [Cpp — Cpseiep] oo) ' 7

(45)

On the other hand, from Eqgs. (17), (25) and (35), the sequential kriging estimator
in terms of the partitioned matrix is



T
Zsequential (X0) = (( Spp [T0)" — less — C;s [c;;fcps]’l (€0 — C;s [Cgpl]szoH Sop Cps]) Z
T
T 1= 117T= =
+ ([CSS - Cgs[ pp] CPS] [CSO - C;;[ pp] CP"]) Zs (46)

From the second terms in the right hand side of these two equations, a condition
for equivalence is

1= -1 -1 -1
[ess — €pe PP Cps] Cso — Cs5 Csp [Cpp — CpsCys Csp] Cpo

= e — C;{s[c;pl]TCpsrl[Eso - T ol ;;I]TEPO] (47)

Also consider, ¢,, = ¢!

_ T
op and ¢y = ¢

p

= —[es — cpuley 1 ep] ' lepley, 1] (48)

are square here. Then,

-1 -1
—Css Csp [CPP — CpsCys CSP]

Introducing all terms within the inverse matrices and making few simplifications,
yields

_ — - -1 —nT T 1T
—[csscsplcpp - csscsplcpscsslcsp] = —[css[cpsl] c;p cgs[cpp] cps[cpsl} cgp]
(49)
The first equivalence condition is satisfactorily accomplished because,
_ -1 1T -1
[csscsplcpp —cps] T = [ee psl] gp Cps] (50)

Notice, this identify provides a proof of Eq. (18)
From the first terms of Eqs. (45) and (46), the next condition for equivalence is

“1. 1=

[Cpp = Cpsis €p]  Cpo — €5 CpslCss — CspCpp Cps] oo

-1 T - —11T=
( Cop CPO) - [CSS — Cps [cppl] CPS] 1[650 — Cps [cppl] CPOH Pp CPS] (51)

calculating some products, the terms containing ¢, cancel out and this leads to,
-1 -1 -1 Tr.—13T . 1-1.T
[CPP — CpsCss CSP] Cpo = [(Cpp) + [CSS - Cps[cpp] CPS] ps[ pp] pp CPS CPO

(52)

making simplifications and introducing terms within the inverse matrix yields,

— -1 — —11T - -1
[CPP o Cpscsslcsp] = (Cppl) + [CSS [Cpsl] C;pCPPCpsl - CPP] (53 )

To prove this last identity, we multiply both terms by the inverse of the first term.
Then, developing products and introducing terms within the inverse matrices give

cpscss csp[css[ ;]Tcgpcps I +1I= <, cpscss Cop (54)
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Finally,
I+ c;l,lcpscs_slcsp =-I+ C;PICpscs_slcsp (55)

Identities, Egs. (50) and (55), prove that Eqgs. (45) and (46) are equal, implying
that sequential kriging will yield an identical estimate as simple kriging using all
the data set simultaneously. Notice that the order of the data set being used does
not affect the final estimate.

34
Sequential kriging variance
Now we develop a mathematical proof that the simple kriging variance of the
simultaneous classic approach will be equal to the total or final estimation vari-
ance of the sequential approach. This also shows that the sequential estimation
variance will be successively reduced as more data are utilized in the refinement
of the estimation made.

The classic kriging variance in matrix form is

Kv(xo) = Gz - zTE‘zo = 02 - V(Xg) (56)

where ¢? is the variance. In classic simultaneous simple kriging, the variance of
the estimated values can be determined from Eqgs. (8) and (11). This is

1q-1o _ 1 le \Te
V(o) = ([cpp — €psCss Csp]  Cpo — cpplcps [css — cspcpplcps] "800) Epo

_ —1- _ _ -1, N
+ ([ess — cspcpplcps] o — €. CopCpp — Cpscy Cp) cpo)Tcso (57)

In sequential kriging, we also have the cumulated variance of the estimated values
from previous steps. This is equivalent to the smooth variance of the estimates
from previous data:

Vpp("o) = [6po]TEpo (58)
or
Vpp(%o) = E};o [C;pl]TEPU (59)

with sequential kriging, the variance of the estimated residuals at any step is
Vss(-xo) = 6T§so (60)
using Egs. (34) and (35), this is

T
Veo(Xo) = [[css — e ] ep) [ c;[c;;]szo]] [ESO —che S| (61)

The residuals are part of additional data that are independent of the previous data

and the kriging variance of estimated residuals is independent of the variance of
the previous estimates. Accordingly, the following algebraic sum should be true:

V(xo) = VPP (xO) + Vss(xo) (62)



T 1 —11T= — -1T= 1T
V(xo) = C;o [Cppl] Cpo + [CSO - Cps[ ppl] CPU]
T, 1-11T[= —11T=
X [[ess — g[ ppl] Cps] ] [Coo — Cg [Cppl] Cpo] (63)

calculating some products leads to

V(%0) = Gpoly ] Gpo + Cholless — il ] eps] ] oo
[T[ _I]TEPO] [[Css_c [C ] CpS] 1]Tz’so 427
= Colless — eplepy T epl T el )" o
+ epalepy 1 Gpol Tless — cple pl]TCPS] T epley ] Go (64)

The second and third terms do not need any operation. Introducing covariance
matrices within the inverse in the last term yields

- —11T —11T= —11T= 1T 1T —11T=
v(xo) = CT ollCss — Cg [cppl} Cps] N0 — e ;[ ppl] Cpo] " [[ess — Cg [cppl] Cps) '

_11T= - —1nT T -11T=
+ C [ 1] Cpo — CT [[CSS - c};s [cppl} CPS] ] };5[ ppl} Cpo
T T _ T T 11T=
+ [CPO] [[[ Cps ]CPPCSS[ psl] };p [Cpsl]cppc;s[cppl} CPS[Cpsl] c}?p] ] Cpo
(65)

Then, terms can be arrayed and after few operations this is,

— T, 1-13T= T 1T T, 1-13T=
v(x0) = E[ess — 5 [Cppl} Cps] | Coo — [C:;s[ pp] Epo) " [less — C,fs [cppl] Cps] ] Co
=T -1 T - T 1T—
- Csocsp[cpp] [less — CSP[Cpp} ps] | Cpo
1T - T - —14T=
"‘C ollc pp] + [[Cpsl]cppcss[cpsl] C;p - CpS[Cpsl]Cpp] ] €po (66)

The last term on the right hand side can be modified similarly to the identity
shown in Eq. (53), this is

= 11T _ 11T T —11T->
go[[cp ] + [[cpsl]cPPCSS[Cpsl] cgp CPS[ psl} cgp] ] Cpo
= (lepp — ps€33 ) Ep0) 0 (67)
Then,
— [l lepa ) Epol lless — chylepa ) cpe] ) o = (—CppCpsless — CopCapcpsl o) o
(68)

Thus, Eq. (66) becomes the same as Eq. (57). This proves that the simultaneous
and the final sequential kriging variances are the same, and also implies that the
assumption of independence between residuals and old estimations is correct.
Considering the sequentlal approach, the sequential kriging variance is

Ky(x,) = 0® = 3_7_; Vi (x,) and decreases as more data are available for estima-
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tion. In other words, residuals will become smooth and estimates will increase their
variance as more data are included in surrounding space of the estimated location.

3.5

Sequential cokriging

Most of the kriging theory is applicable to the multivariate case or cokriging case.
Similarities in notation between kriging and cokriging arise particularly when
matrix notation is utilized (Myers, 1982). Here, we present a new form of cok-
riging, which we term sequential cokriging. This type of technique was empiri-
cally suggested by Harvey and Gorelick (1995) to estimate hydraulic conductivity
fields conditioned on head and solute arrival time consecutively. Similarly, Li
(1998) empirically used this technique to estimate conductivity in variably sat-
urated flow field using head and concentration measurements.

A vector random function Z(x) is made of a set of spatially cross-correlated
random functions, each one of which corresponds to a p_grticular statistical at-
tribute. Then, there is one multivariate random variable Z(x;) at each location. If
data are available at a point, the multivariate random variable takes constant
values for the known attributes. Since the random variables are spatially corre-
lated, the available data can be interpolated by cokriging to provide estimates at
any non-sampling location.

For cokriging, we need multivariate covariance matrices. The set p of old data
is at n locations and the set s of new data is at m locations. The numerical
multivariate covariance matrices for attributes {z,w,...,q} are Cy, Ci;and Cp,,
where (capital) C means multivariate covariance. These are,

czp 2p czp Wp ch ap Czz,  Czow, Czyq.

Cwpz,  Cwpw, Cwpap Cwiz,  Cwow, Cwiq,
Cpp =

Cszp CQp Wp C@p‘lp C%Zs chWs C%qs

Czpzs Czp W Czp qs

przs CWIJ Wy cwp qs

qu Zs C‘Jp Ws qu s

Notice, all the diagonal terms are (auto)covariance matrices and the off-diagonal
terms are matrices of cross-covariances. The covariances between data and any
estimated locations are

Coozo Cowo -+ Czpgy Cozo Cowy -+ Cago
Cwpzo Cwpwo -+ Cwyqy Cwizo Cwewo -+ Cwygo

Cpo = Cso = . (70)
Corze Capwo -+ Capao Cozo Cqwo - Cquqo

T . . .
Also, Cy = [CPS] , and consider C,, as the zero lag distance multivariate
covariance matrix for the attributes.



The matrix form of the estimation variance in terms of the cokriging weights
and covariances is given as follows:

— T —
Do | " [Cop Cps Cpo | | Do
var(Az(x,))] = | T | |Cp Cs Coo || T (71)

C
- I COP COS COO - I
and

[var(Az(x,))] = [Tpo] " [Cop] Tpo + 2[Tpo] " [Cps] Teo
—2[Tpo) "Cpo + [Tao] " CesTso — 2[Ts0) " Coo + Coo (72)

The matrices of weights are composed of column vectors, and each vector esti-
mates a particular attribute. Minimization of Eq. (72) leads to the classical cok-
riging expressed in partitioned form. Instead of doing that, we extend the
sequential estimator of Eq. (17) to the cokriging case. This is

29(x0) = [[8po]" — [Bs0] "[0ps] 2 + [@] "2 (73)

where [fpg] T_ [QPO]T—[@U]T[QPS]T and [l:so}T: [ﬁiso]T. It is important to notice
that vectors in the univariate approach are matrices in cokriging. The data ma-
trices z, and z, have q column vectors, one for each attribute. Matrices of weights
for the previous and additional data sets are as follows:

aZpZa uzpw,, e Czpqo
i Bo. Vuw ... A
WpZo WpWo Wpqo
quZo (pqua e quqo
and
Olzz, }'Lzswo ce Czsqa
B Yy ... W
— WsZ WsWo wsq
wso — .S (] sYo0 (75)
’YqSZD Q)QSWD e TQS‘]a

The vectors in the major diagonal are weights from an attribute that are used to
estimate the same attribute. On the other hand, the off-diagonal vectors are
weights of one attribute that are used to estimate a different attribute. Notice that
the elements of 0, for old versus new data are n by m matrices. Replacing
matrices defined in Egs. (69) and (70) into Eq. (71) gives

[Opo] — [0 (@] ] " [Cr o Cpo | [ [0pa] — [Ope]
[Var(AZ(xﬂ))] = | T Csp Cs Cs Do
-1 C0p Cos  Coo —I

(76)
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The minimum variance is obtained by taking derivgtiveAs of the matrix of esti-
mation variance with respect to the weight vectors: 121825l — o This provides
a classical cokriging system of equations in matrix form”as follows:

CppBpo = Cpo (77)

In the sequential kriging approach, this system of equations is used only in the
first step.

The derivative of the variance with respect to the weight vectors of the addi-
tional or new information % = 0, in analogous form to the univariate

case, gives the next conditional cokriging system
[Css - é;ﬂscps]ﬁjso = [Cso - égscpo] (78)

This is the equation used for cokriging after a previous estimation. This cokriging
of previous and new additional data is a two-step approach. Another way of
writing conditional cokriging of residuals using the matrix of weights given in
Eq. (74) and introducing matrices of residual conditional covariances is

ézszs ézsws L ézsqs OLZsZa p‘zswg e Czsqg
€wiz,  Ewaw, -+ By Buzy, Vwaw, - Mg,
8%25 quws . quqs i quzo (pqswlJ ce Tq;% ]
€2, Ezw, -+ Ezq,
€wiz, Ewaw, -+ Ewigo
= (79)
quzo quwo e quqo

Notice the cokriging matrices are more complicated than in the kriging case. A
numerical multivariate residual conditional covariance matrix can be defined
from Eq. (78) as follows:

€z Ezw, -+ Ezg
Ewz  Eww - Ewg
&j

| €42 Eqwy - Equ

_ — — e 1T
CZiZj CZ,'Wj v Cziqj O(zl,zi uzpw,- ce Czpq,-
Cwizi  Cwiw; -+ Cwg; Bwpz,- Vwpw - nwpqi
Caz. Cagwi +-- Cgg. N 0] T

L “4iz qiv; 9i9; | Yooz Pzowi -+ Tapai |




c c ¢
2pZj Zpwj e Zpdj

CWij prwj e Cquj
. | (80)
quzj quwj e Cqqu

The off-diagonal terms are residual conditional cross-covariances and the major
diagonal terms are the already used residual conditional (auto)covariances.
Equation (80) expresses the residual conditional covariance between two point
locations and weights may be expressed in terms of the previous cokriging step.
In the case of several covariated locations, the terms in the residual conditional
covariance matrix will be matrices. If several locations are covariated to a single
location, the terms on the matrix will be vectors.

Generalization of the sequential approach comes from considering any two
steps r and r + 1. In a form analogous to the univariate case, the conditional
cross-covariances at step r + 1 can be computed with the cross-covariance at step
r. Extending Eq. (43) to the multivariate case, the updated residual conditional
covariances and cross-covariances are

-~ o o7
r r r = =
ZiZj Sziwj e 8Zx“lj Oztz;  Hgw, - Czsrq"
g e ... g g Y n
1) wiz;j WwiW; Wwigj BW;ZX, Vwrw;, - - nw;q,'
; _ _
I e’ ... ¢ v 5 T
qiz;  Cqiw; qiqj LYqz Pgwi - Tqa
r=r =r 2r T
82;21- Sz;w]» Szgqj
= = o
Ewiz Ewrw, Ewig;
x (81)
or ar s
| Bam Bqw o0 Bqg

Updated residual conditional cross-covariances will follow the same properties as
demonstrated before for the unvariate case, and we can subsequently generalize
the residual cokriging to a sequential approach algorithm in explicit form as
follows:

=r =r __ ar
Easr W9 = Egrp

=r+1 —r+1 __ gr+l
857+lsr+1m57+10 - 8$7+10
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These sequential cokriging equations are managed in the same way as classic
cokriging. The case of available data for all attributes at each sampling location is
called “isotopy”, and implies that matrices will be full. The case of missing some
attributes at some or all sampling locations is called “heterotopy”, and implies the
rows and columns corresponding to missing data must be erased from the cok-
riging equations.

Sequential cokriging is highly attractive because it allows one to deal with
several attributes and a large number of data points. Sequential cokriging can
allow one to initially cokrige using just the primary attribute, and in a second part
cokrige the secondary attribute. Notice that in all cases, it is desirable to have the
new data or second attribute data at different locations than the old or first
attribute data to avoid zero cross-covariances.

3.6

Residual conditional cross-covariances

The introduction of residuals conditional cross-covariance computations by
matrix operations in Eq. (80) is a consequence of the derivation of the cokriging
equations in which old and additional data are utilized in a successive fashion.
Moreover, we show that the residual conditional cross-covariance concept is a
generalization of the known conditional (auto) covariance. The sample cross-
covariance for two attributes, z and w is

Caow, = El(2u — 1) (wy — 1, )] (83)

If we assume that the random functions are residuals with zero mean. Then
residuals cross-covariance is defined as:

Ezw, = E[(éu - Zu)(wv - Wv)] (84)

where z, and w, are conditional means of the random variables at locations u and
v. The hat values are the respective estimates made with cokriging with old data.
Since,

Wy = [ Zi + Vi, (85)
2u = L7 + LW, (86)
Then,

Eo,m, = E[((F02 + Bl #) — z,) (2 + 9%, ;) — wy)] (87)

Making operations yields,

Eaw, = El8i, (ZZ] )y, + 03, (ZeW] )V + B]u(W]_’T)“'lV + B}u(wj )i

— i, (w2) = B i)) — iF(2u2]) — V], (2} ) + Zuw]] (88)
Taking the expected value, this is
Ez,w, = O, Co,Hy + G Co Vi + ﬁ};cwﬁiaiv + ﬁ}?;cwj i,

5Tz ST = —T =
- zuCWsz B vawj - }'Livczuzi - Vjvczuwj + CZqu (89)



To get further simplifications we appeal to the following cokriging equations for
two attributes which have been multiplied by vectors of weights. Those are

oT S ST o =T=
0, Cz7; Miy + 03y, 0, Viv = %y, G,

=7 5 =7 - _ RT=

BquVT/jZ,‘ Miv + BjchjovjV - BquWjWV (90)

also

T = oT = ST

0, Czz; Wiy + Bjucwjfip‘iv = HiyCzz, (91)

=T . <. RT . .o _oT=. 433
Cxi;,[czilfiljvll/ + BquW]W}V]V - VquW)‘Zu

Identities in Egs. (90) and (91) are substituted into Eq. (89). When the first two
identities are utilized, it follows that

Ez,my, = Cz,w, — ﬁiTszuEi - U]?;Ezuwj (92)
If the second two identifies are utilized, then

Czw, = Czw, — &iTuvaii - ﬁﬁfwij (93)
Notice that Eqs. (92) and (93) give the same numerical results. From this, it is
evident that conditional cross-covariance matrix is symmetric when the previous

covariance matrix is symmetric. We can also look at the matrix computation of
this case by using Eq. (80). This leads to,

= = T - -
g Couzw  Czyw, | gz,-zu Hziw, Cziz, Czw, (94)
uv — - - —
Cwyz, Cw,w, Bwjzu Viwiw, Cwiz,  Cwyw,

The residual conditional cross-covariances are easier to compute using matrix
operations. At zero lag distances, conditional covariances and cross-covariances
are the kriging or cokriging variances.

4

Discussion

From the practical point of view, we have provided an alternative for solving
kriging and cokriging with large data sets. Most of the currently available software
that kriges data sets applies the local neighborhood algorithm which may not
provide unique results. The sequential approach, provided here, is an algorithm
which allows for unique results and requires less effort in terms of inversion of
matrices. Consider, for example, 100 data locations and 1000 grid points to krige.
Using the local neighborhood approach, one must invert a covariance matrix at
each of the 1000 grid locations, since the local neighborhood is a moving window
and the available data array changes from one point to another. The second part
of the interpolation is a simple matrix multiplication. In the sequential approach
proposed here, the slowest case may be that one takes just two data locations and
invert a two by two matrix of covariances. The matrix product is needed to
estimate the 1000 locations. In a subsequent step, two additional data points are
used to compute residual conditional covariances by using a matrix product.
Then, a two by two matrix of residual conditional covariances is inverted. At this
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step, the result will yield 1000 estimated residuals. In this particular example, the
sequential approach requires only 50 inversion of small matrices, while the local
neighborhood requires 1000 inversions of larger matrices. However, the se-
quential approach may need much more matrix products. The major advantage of
the sequential approach is that it gives a unique numerical solution. On the other
hand, local neighborhood kriging exhibits spurious behavior, and results may
depend of the size and shape of the neighborhood.

The sequential kriging and cokriging approaches are the result of a successive
minimization of the estimation variance. The equivalence of results of these new
approaches and the classical counterparts validates our sequential algorithm
which is a desirable solution for interpolation with large data sets and/or when all
data are not available at once. The covariance matrices to be managed may be
reasonably small. However, the covariances between old and new data at each step
are still required for computation of the residual conditional covariance while
conditional cross-covariances are computed analogously to univariate residual
conditional covariances. Another important finding is that updated re-
sidual conditional covariances can be easily computed from previous residual
conditional covariances. The use of matrix notation greatly facilitates the required
operations, and the smoothing effect of kriging is proved to be reduced se-
quentially. In the cokriging case, a cokriging estimation covariance matrix
measures the smoothing effect. Sequential kriging for weaker stationary random
functions may be derived using the same procedure. Moreover, sequential cok-
riging is expected to become useful for solving the problems in hydrology and
interpolations in the space and time domains.
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