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An Efficient Method for Simulating Steady Unsaturated Flow in Random
Porous Media: Using an Analytical Perturbation Solution

as Initial Guess to a Numerical Model

THOMAS HARTER AND T.-C. JIM YEH

Department of Hydrology and Water Resources, The University of Arizona, Tucson

Numerical simulation of flow through multidimensional heterogeneous soils under unsaturated
conditions is a computationally intensive task. The governing unsaturated flow equation is nonlinear.
The degree of nonlinearity depends on the unsaturated hydraulic properties of the soil and the degree
of heterogeneity. In this paper, we present a highly efficient method to simulate unsaturated steady
state flow through random porous media. Our method utilizes the analytical (approximate) solution
derived by a perturbation-spectral method as an initial guess solution for a numerical model to simulate
two-dimensional vertical infiltration problems. It is found that this approach, which we call "ASIGN-
ing," reduces the required CPU time by one to two orders of magnitude. ASIGNing is demonstrated
to operate successfully under a wide variety of boundary conditions which may substantially deviate
from those imposed on the initial guess solution. A large range of mean and variances in the
independent variables In Ks and a or alternatively In a has been tested and it is shown that the method
works well for variances of the unsaturated hydraulic conductivity a^ K> < 5 and average (a) ^ 0.1
[cm-1].

INTRODUCTION

Effects of soil heterogeneity have been the focus of both
field and theoretical research for the past decade [e.g., Hills
et al., 1991; Hopmans et al., 1988; Mantoglou and Gelhar,
1987; McCord et al., 1991; Russo, 1991; Unlu et al., 1990;
WierengaetaL, 1991; YehetaL, 19850, b\ YehetaL, 1986].
Analytical models are essential tools for investigating the
effect of heterogeneity on flow and transport in the unsatur-
ated zone. However, the nonlinearity of the governing flow
equation, the degree of nonlinearity, and the spatial variabil-
ity in the unsaturated hydraulic properties often prohibit the
development of analytical solutions. Analytical solutions are
only available for some special cases, such as one-
dimensional steady state and transient infiltration in layered
soil with Gardner type unsaturated properties [Yeh, 1989;
Warrick and Yeh, 1990; Srivastava and Yeh, 1991]. For more
general problems we often rely on numerical techniques
such as finite difference and finite element methods [compare
Fletcher, 1988; Anderson and Woessner, 1992].

The finite element or finite difference equations for unsat-
urated media are commonly written in form of a linearized
matrix equation such as

The nonlinear solution is essentially found by repeating
the linear solution to (1) at increasing iteration levels m until

A(xm)x" = b (1)

where m indicates the outer, nonlinear iteration level, A is
the coefficient matrix, x is the vector of unknown values, and
b is the vector of known terms. Direct (noniterative) or
indirect (iterative) methods are used to solve the inner, linear
part of (1) numerically. In general, direct algorithms require
a large amount of computer storage for multidimensional
problems. Hence most numerical techniques employ so-
called indirect or iterative methods for solving the linear part
of (1) to improve CPU efficiency and to reduce the memory
requirements for the computer.
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the convergence criterion |xm+l - X" < 8 (a prescribed
tolerance) is met. Several techniques have been developed
based on (1) such as the Picard method and the Newton-
Raphson method [Ortega and Rheinbolt, 1970].

If (1) represents a transient problem, both the inner and
outer iteration procedure start from the initial conditions of
the boundary value problem and march through time. For a
steady state problem, the iterative procedure requires a
starting approximate solution x1 (initial guess or initial
solution). The initial guess has little bearing on the final
solution. However, it can reduce the number of iterations
that are necessary for convergence of the solution if the
guess solution is close to the actual solution. In the case of
nonlinear equations, no guarantee exists, even under the
absence of round-off errors, that the outer or nonlinear
iteration methods will converge under some predefined
conditions. In general, the initial guess must therefore be
close to the solution to avoid divergence of the outer
iteration scheme. The degree of similarity between initial
and actual solution that is required for convergence depends
on the degree of heterogeneity and nonlinearity in the
boundary value problem.

It is our experience that the numerical analysis of nonlin-
ear, steady perturbation problems with either the Picard or
the Newton-Raphson method is mostly impossible, since it is
difficult to prescribe an initial guess that consistently leads to
convergence in the solution of (1). One may circumvent this
difficulty by using either a transient time-marching approach
(i.e., solving the steady state flow problem by the transient
approach) or a pseudo transient approach [Fletcher, 1988].
Both techniques diagnolize the matrix and expand the radius
of convergence but they require numerous time steps to
obtain an approximate steady state solution. As a result,
such approaches often require large amounts of CPU time
[e.g., Ababou, 1988]. In the past, convergence problems and
CPU time requirements severely limited the numerical in-
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vestigation of the effects of soil heterogeneity on unsaturated
flow and transport. While numerical methods have enjoyed
relatively widespread use for saturated problems, numerical
stochastic analysis of unsaturated flow and transport has
been an exercise with very limited applications.

To alleviate these problems, we suggest here that a very
powerful initial guess can be provided by solving an approx-
imate problem to which the analytical solution is known (to
ASIGN: to use an analytical (or approximate) solution as
initial guess to the numerical solver). In this paper, we
develop a new technique which utilizes a spectral solution
for flow in random porous media under unsaturated condi-
tions as an initial guess solution for the Newton-Raphson
iterative scheme in a numerical model. We demonstrate the
advantage of the approach through several examples.

STATEMENT OF THE BOUNDARY VALUE PROBLEM
Flow in two-dimensional heterogeneous porous media

under fully unsaturated conditions is generally described by
the Richards equation:

— K(h)
dh

= C(h) —
dt

(2a)

where x\ and x2 are the vertical and horizontal coordinates,
respectively, and Xi is positive upward, h is the matric
potential (negative for unsaturated condition), and K(h) is
the unsaturated hydraulic conductivity, which is a function
of h. The moisture capacity term C(h) = d6/dh also varies
with h . Under steady state conditions the right-hand side of
(2d) vanishes and the solution becomes independent of the
water retention function 0(h):

— K(h) =0 i = 1, 2 (2b)

The parameteric relationship used in this analysis to describe
K(h) is an exponential model first suggested by Gardner
[1958]. That is,

K(h) = Ks exp (ah) (3)

where Ks is the saturated hydraulic conductivity and a is a
soil parameter defining the rate of reduction in K(h) as a
function of head h and hence defining also the degree of
nonlinearity in (2). For transient solutions of (2a), the
moisture release curve is given in the form suggested by
Russo [1988] and is consistent with the pore model by
Mualem [1976]:

= er+(0s- 0.5a|/i|)] 2/(m+2) (4)

where 0is the moisture content, 0S is the moisture content at
saturation, and Or is residual moisture content. Here m is a
parameter commonly determined by fitting (4) to measured
water retention curves. It accounts for the tortuosity of the
flow path and the correlation between pores. For heteroge-
neous soils, Ks, a, m, 6S, and Or may be functions of
location. Equations (2)-(4) can be solved by either finite
difference or finite element methods. In the following anal-
ysis, a Galerkin finite element model, MMOC2 [Yeh et al.,
1993], solves (2)-(4) with associated boundary conditions.
MMOC2 solves the algebraic equation (1) resulting from
finite element approximation of (2) using a preconditioned

conjugate gradient solver on the inner level. The computer
program implements the Newton-Raphson iteration tech-
nique to resolve the nonlinearity of the matrix equation at
the outer iteration level. MMOC2 can be used to solve the
steady state solution of (2b) either directly or via a transient
solution of (2a) for t —» o°, whereby the choice of C(h) is
arbitrary and can be made to improve the CPU efficiency
(pseudo transient method). Since there is a trade-off"between
the choice of C(h) and the size of the time step Af , CPU time
improvements due to an optimal choice of C(h) are limited.

FORMULATION OF THE INITIAL GUESS SOLUTION

To obtain a close initial guess solution for steady state
infiltration into heterogeneous porous media, where Ks and
a in (3) are second-order stationary stochastic processes, a
quasi-analytical solution based on a first-order perturbation
analysis similar to the work by Bakr et al. [1978], Gelhar and
Axness [1983], and Yeh et al. [19850, b] is developed.
Equation (2b) can be rewritten as

2h a In K(h) dh
+ ————— —

d In K(h)
+ ————— -0 (5)

where / = 1, 2. We use the perturbation notation for the
random variables In Ks, a, and h:

a = A + a'

h = H + h'

(6)

where F, A, and H are the expected values of In KS9 a, and
h, respectively, and/', a', and h' in zero-mean, second-
order stationary perturbations. The unsaturated hydraulic
conductivity is then given by

In K(h) = In Ks + ah = F +/' + (A + a')(H + h') (7)

Using (6) and (7) in (5), expanding, subtracting the mean
equation, neglecting all higher-order perturbation products,
and assuming that the mean flow is in x\ direction under unit
mean gradient conditions (gravity flow), we arrive at the
first-order perturbation approximation for the Richards
equation:

d2h' dh'
___——
dx\

J-Jn
da'

—— =° ' = 1 . 2 (8)

Note that this is a linear equation. The linearization has been
achieved by dropping the higher-order perturbation products
and by assuming that the average gradient is unity. This
equation can be solved numerically using a finite difference
or finite element method for given heterogeneous a' and f
fields. The approximate solution will be much easier to
obtain than that of (2b), since the problem has been linear-
ized. Alternatively, if the porous medium is assumed to be of
infinite extent and since a', f, and h' are stochastic station-
ary processes, one can solve (8) using a combination of
spectral analysis and fast Fourier transform technique. A
similar approach was successfully applied to horizontal
saturated flow [Gutjahr et al., 1992]. The continuous param-
eter stationary processes are represented by Fourier-
Stieltjes integrals [compare Priestley, 1981]:
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where dZp(k) are orthogonal complex stochastic processes,
p = f, a', or h'. The process dZp(k) is a zero-mean
univariate Gaussian random variable with a variance equal
to the spectral density Spp(k)dk, which is the Fourier
transform of the covariance function for the spatial random
processes/', a', or h'. Any dZp(ki) is statistically indepen-
dent of dZp(kj) for / 7^ j. Using (9) in (8), a closed-form
expression for the relationship between Fourier amplitudes
of a', /', and h' can be obtained:

dZh,(k) =
+ H dZa,(k))

(k + k - (10)

where dZa>(k) may be assumed equal £dZf(k) (i.e., a' and
/' are perfectly correlated through a' = £f', where £ is a
proportionality constant); dZa>(k) may also be chosen to be
partially correlated to dZf(k) or independent. The dZf(k)
and dZa'(k) processes are generated as discretized, trun-
cated spectral fields of (2m)2 uncorrelated complex random
numbers, where at each discretized spectral location kjh 0 <
j < m, -m < 1 < m [Gutjahr et a/., 1992]:

1/2
( ID

Cji and dji are independent normal random variables with
zero mean and a variance of one half. To ensure that the
spatial random processes p are real, we set dZp(k_ji) =
dZ*p(kji), the conjugate complex of dZp(kjj)\ dZh>(kji) can
then be computed explicitly (without solving a partial differ-
ential equation) using (10). The spatial solution hji and the
random input fields/}/ and a}/, 0 < j, I ^ m are obtained
after a numerical inverse fast Fourier transform (FFT) of
their respective discretized spectral representations [Gutjahr
et al., 1992]. The two-dimensional spatial random field with
m2 points is only one quarter of the size of the inverse FFT
of dZp due to the truncation of the spectrum and the
resulting symmetry in the transformed field.

Recent field data indicate that the soil texture parameter a
is lognormal distributed [e.g., White and Sully, 1992]. A
first-order perturbation equation can be derived for this case
as well. Following the approach by Ababou [1991], we write

In a = G + y'

a = exp (G + y') = F exp (y ') (12)

where G = E [In a] and y' is a multivariate normal
distributed random varible. Again using the first-order ap-
proximation, we can write a:

a ~ F(l + y') (13)

Using (13) instead of the second equation in (6) for the
otherwise identical derivation of the perturbation equation,

TABLE 1. Parameters for the Numerical Experiments

a Case(l) and In a Case a Case(2)

(9)
Mean In Ks , cm/day
Variance &f>
Mean a: A, I/cm
£a'/' = ^a'/^f
Mean In a: F, I/cm

Mean head H, cm

3.5
0.1, 1.5, 6.0

0.01
0.001

-4.6
0.1

-150

1.5
1.5
0.001
0.0002

-150

the first-order perturbation equation in the case of lognor-
mally distributed a becomes

h' dh' dy' df— + r — + #r — + — -o
dx dx

f = l , 2 (14)

From this, a quasi-analytical spectral solution algorithm is
derived similar to the solution of (10):

dZh.(k) =
i k } ( d Z f ( k ) + HT dZyf(k))

+ k\ -
(15)

which may then be utilized as initial guess to the numerical
solution of (2) if a is a lognormal random variable (12).

EXAMPLE PROBLEMS
To investigate the capability of ASIGNing at various

degrees of soil variability and to compare the efficiency of
the ASIGNed steady state solution with the hitherto stan-
dard (pseudo) transient numerical solution method we chose
a principal parameter set that allowed variations in the
moments of In Ks, a, and In a over several orders of
magnitude. The values of both the deterministic and the
stochastic parameters are summarized in Table 1. Our ex-
amples are for two-dimensional cross sections of 64 elements
width and 64 elements depth. The size of the elements is 10
cm by 10 cm, resulting in a total domain size of 6.4 m by 6.4
m. In all simulations an exponential isotropic covariance
function is specified to characterize the random variables/',
a', and y':

Cov (b) - cr2exp | —
A

(16)

where cr2 is the variance of the random variable, b is the
separation distance, and A = 50 cm is the correlation length.

The mean of a, A, determines the degree of nonlinearity in
(2). Initially, two values are chosen for A: 0.01 cm"1, which
is typical for fine sandy to loamy soils (a case (1)), and 0.001
cm"1, which is typical for fine-grained silty and clay rich
loamy soils (a case (2)). We use the a case (1) to investigate
the effect of different boundary conditions. The a case (2)
and the In a case are used to demonstrate the efficiency and
flexibility of the method with respect to various possible
applications.

The boundary conditions are (1) of the Dirichlet type
(prescribed head) on all boundaries; (2) of the Dirichlet type
at the top and bottom of the domain, but with zero flux on
the vertical boundaries; (3) of the Dirichlet type at the
bottom boundary, zero flux at the vertical boundaries, and a
prescribed flux of q = 7.4 cm/hour at the top boundary (then
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- input parameter set
————I——————

i

generate random dZp dZa, [eq. 11]

J [eq.10]

Inverse FFT-

ĵuasi-analytical h

random field generator
&

quasi-analytical solver

random input fields initial guess

boundary conditions ————•»-

finite element model MMOC2 [eq. 2]
_ v _

^correct solutionh^
numerical solver

Fig. 1. Schematic overview of ASIGNing.

H ~ -150 cm); (4) unit gradient conditions at the bottom
boundary, zero flux at the vertical boundaries and prescribed
flux q = 7.4 cm/hour at the top boundary; (5) water table
boundary at the bottom (uniform Dirichlet, hBC = 0), all
other boundaries are Dirichlet boundaries; (6) water table
boundary at the bottom (uniform Dirichlet, hBC = 0), zero
flux at the vertical boundaries and Dirichlet boundary at the
top; and (7) the In a case is tested with boundary condition
1 and parameters similar to the a case (1) (see Table 1).

For the combined ASIGNing method each Dirichlet
boundary (except the water table condition) is equal to the
perturbed random head boundary produced by the quasi-
analytical solution for an infinite domain. In the transient
solutions all head boundaries are uniformly set to H = -150
cm, which is the mean head used for all example problems.
All of the above boundary value cases are run at variances
o-f = 0.1, 1.5, and 6. Some cases are also repeated at crfi =
0.01, 0.5, 1.0, and 3.0. The geometric mean of Ks is 33.1
cm/hour in a case (1) and 4.5 cm/h in a case (2); a' and y' are
assumed to be correlated to In Ks with proportionality
constants £ = 0.001 and 0.1, respectively. It is chosen such
that none or only minor portions of the domain become
saturated, even at large matric potential variances. Partial
saturation poses no computational problem to the numerical
code MMOC2, but our interest focuses on unsaturated
conditions. We also repeat the a case (1) with crj> = 1.5 for
domain sizes ranging from 322 to 2562 elements to demon-
strate the applicability of ASIGNing to small as well as large
numerical grids. All simulations are performed twice: one
simulation with the transient approach using the transient
option of MMOC2 and one simulation with the ASIGNing
method, which combines the quasi-analytical solver with the
steady state version of MMOC2. Except for the boundary
conditions, all deterministic and stochastic parameters and
the constitutive equations for K(h) and 6(h) are identical for

the analytical, the steady state, and the transient solutions of
each example problem. The random fields of/' and a' or y'
produced to obtain the initial guess via (10) or (15), respec-
tively, are used as random field input to the steady state and
transient numerical solutions. A schematic overview of the
ASIGNing methodology is given in Figure 1.

RESULTS AND DISCUSSION

The Quasi-Analytical, the ASIGNed, and the
Transient Numerical Solution in Comparison

It is generally known that the first-order perturbation
equation (8) is a valid approximation to the nonlinear Rich-
ards equation (2b) for variances of/' <$C 1.0 [Yeh et #/.,
19850]. Hence for problems involving only small perturba-
tions, the quasi-analytical spectral solution technique itself is
expected to be satisfactory. Figure 2 shows that the head
field from the quasi-analytical spectral solution to (8) is,
indeed, in very good agreement with the ASIGNed solution
to (2b) at o-f = 0.1. At higher variances, the approximate
solution deviates significantly from the "true" (numerical)
solution of the Richards equation, in particular with respect
to the head gradients. Harter et al. [1992] showed that the
velocity fields derived from the quasi-analytical head solu-
tion to (8) are not divergence-free (i.e., not without artificial
sources and sinks) for o-f > 0.25. In contrast, the numerical
solution implicitly guarantees a mass-balanced head distri-
bution which will result in a divergence-free velocity field. It
is the inaccuracy in the head gradient field which prevents
the spectral solution to (8) to be a useful tool for transport
simulations in highly variable media. Nevertheless, the
overall spatial head distribution pattern is well preserved by
the quasi-analytical spectral solution to (8), even at large
variances (Figure 3). This may explain why the quasi-
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quasi-analytical solution ASIGNed solution

200

100 200 300 400 500 600 [cm] 100 200 300 400 500 600 [cm]

Fig. 2. Low variability: comparison of the first-order perturbation solution obtained by the quasi-analytical spectral
method with the ASIGNed finite element solution to the Richards equation under boundary condition 1 at o^ = 0.1.
The labels indicate the head (centimeters) at the nearest contour line.

analytical solution provides an initial guess which allows a
direct numerical steady state solution of (2) much beyond the
usual limits of the first-order perturbation approach.

With regard to solution uniqueness, we find throughout
the set of experiments performed that the ASIGNed solu-
tions are in excellent agreement with the those obtained by
the time-marching approach. As an example, Figure 4 com-
pares the ASIGNed with the late transient solution for a case
(1) under boundary conditions (3) at o-f = 6.0. The only
differences in the two solutions are near the bottom of the
domain due to different constant head boundary conditions:
the ASIGNed solution has a random head boundary given by
the initial guess. The transient approach is based on a
uniform head boundary condition with h = -150 cm. Given
the agreement between the two solutions for the entire range
of cases tested, we conclude that the ASIGNed solutions are
as exact as the late time transient numerical solutions to (2).

Efficiency of the ASIGNed Solutions
The experiments show that the quasi-analytical spectral

solution method to (8) is an extremely CPU-efficient algo-
rithm to obtain approximate solutions to (2b) (Figure 5). Due
to its spectral nature the number of computational steps is
finite and independent of vj<. The savings in CPU time over
the transient tirne-marching numerical solution of (2d) is on
the order of three magnitudes and more: the quasi-analytical
solution of (8) on a discretized grid of 64 x 64 points takes
less than 1 s on an IBM RS6000/560 workstation, while the
CPU time of the transient finite element solution with 64 x
64 elements is on the order of tens of minutes for vj> = 0.1
(for a comparison of the performance of the IBM RS6000/
560, see Tripathi and Yeh [1993]).

At higher variances numerical solutions must be sought to
correctly solve Richards equation (2) and the main purpose

_ quasi-analytical solution ASIGNed solution

200

100 200 300 400 500 600 [cm] 100 200 300 400 500 600 [cm]

Fig. 3. High variability: comparison of the first-order perturbation solution obtained by the quasi-analytical spectral
method with the ASIGNed finite element solution to the Richards equation under boundary condition 1 at o^ = 6.0.
The labels indicate the head (centimeters) at the nearest contour line.
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ASIGNed solution transient solution

100 200 300 400 500 600 [cm]

- initial head distribution

100 200 300 400 500 600 [cm]

Fig. 4. Boundary condition 3 with three flux type boundaries: comparison of the ASIGNed steady state finite
element solution to the Richards equation with that obtained by transient time marching aia-f = 6.0. The labels indicate
the head (centimeters) at the nearest contour line.

of ASIGNing is to reduce the CPU time requirements of the
numerical solution. Indeed, the CPU time savings of the
combined approach (ASIGNing) over the transient simula-
tion technique are of a factor 20-30 at any input variance
(Figure 5). The computation time of the initial guess (1.5 s of
which almost 1 s is input/output) is almost negligible com-
pared to the ASIGNed numerical solution time.

While the first example in Figure 5 contrasts two techni-
cally identical problems, since both the ASIGNed steady
state and the transient solutions are subject to Dirichlet
boundary conditions, the physical problems solved are dif-
ferent: the transient solution assumes a uniform head of
-150 cm all around its domain. The assumption of such

uniform head boundaries is difficult, since in most unsatur-
ated flow and transport applications little is actually known
about the head boundaries of the domain. The ASIGNed
steady state solution, however, takes advantage of the
random head boundaries provided by the initial guess, thus
solving for an approximate quasi-infinite domain. In prac-
tice, the use of random head boundaries provided by (10) or
(15), which are (approximately) consistent with the random
input parameter fields In Ks and a, is much more realistic
than uniform head boundaries. With the random boundary
head approach one can simulate a soil domain that has no
definite boundaries. Many authors have circumvented uni-
form Dirichlet boundaries by specifying flux boundaries

Dirichlet B.C. only
CPU time [sec.]

103

10'1 -

pseudo-transient FE with uniform initial guess

steady state FE with analytical initial guess

quasi-analytical solution -

1 2 3 4 5 6
variance of logKs

Fig. 5. CPU time (seconds) as a function of a-f for the quasi-analytical spectral method, the ASIGNed numerical
solution (without computation of the initial guess), and the transient numerical solution with a uniform initial head
distribution. The numerical cases are computed with boundary condition 1.
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Neumann and Dirichlet B.C.
CPU time [sec.]

104

10J

102

10°

10"

3 Neumann B.C. and 1 Mixed

two and three Neumann B.C

transient FE with uniform initial guess

ASIGNed steady state FE

quasi-analytical solution

1.0 2.0 3.0 4.0 5.0
variance of logKs

6.0

Fig. 6. CPU time (seconds) as a function of o-f for the quasi-analytical spectral method, the ASIGNed numerical
solution (without computation of the initial guess), and the transient numerical solution with a uniform initial head
distribution. The numerical cases are computed with boundary conditions 2 and 3. No convergence in the ASIGNed
solution was achieved for boundary condition 4.

(Neumann conditions) around the domain, which are gener-
ally more CPU expensive to solve. The CPU savings of the
combined approach with random Dirichlet conditions over
the transient approach with at least three Neumann condi-
tions are approximately two orders of magnitude (Figures 5
versus 6).

In the examples tested, both the ASIGNed steady state
and the time-marching (transient) solutions cost increasing
CPU time as more and more Neumann conditions are
introduced. However, throughout the range of variability
ASIGNing remains a much more efficient technique (Figure
6). Surprisingly perhaps, the most significant time savings
(two orders of magnitude) under otherwise identical bound-
ary conditions are obtained for the water table scenario with
no-flow conditions on the vertical boundaries (Figure 7). The
head field in this case is not only heterogeneous, but also
deviates from the uniform mean head assumption implicit in
the initial solution to (8). This shows the broad applicability
of ASIGNing.

The only boundary conditions, for which no ASIGNed
steady state solution is obtained are those which involve a
unit gradient boundary condition at the bottom of the cross
section. The unit gradient boundary is a Cauchy or mixed
type condition. Unlti et al. [1990] have shown for the
one-dimensional case that unit gradient boundary conditions
are associated with head variances that are higher than those
associated with other types of boundary conditions, which
may explain the convergence problems of ASIGNing in this
case.

Figure 8 shows that the efficiency of our proposed method
decreases only slightly as the size of the domain increases
from 1,000 to over 65,000 elements. At any domain size, the
proposed method is particularly powerful at high variances
when compared to the traditional transient solution CPU

time. The method also applies successfully to the In a case.
Table 2 provides some example CPU times for both the In a
case and for a case (2) with much smaller mean a. The
efficiency of the method is comparable to the cases shown in
Figure 5.

With regard to the overall efficiency of ASIGNing over the
common transient method it should be noted that the con-
vergence criteria of the transient method is not coded into
the model (such as a stopping rule of the type Max \ht+l -
ht\ < 6), since transient solutions may change very little
within one time step without having necessarily reached
steady state. Rather, the transient heads are continuously
evaluated at seven points uniformly distributed over the
domain. From this head record, the actual CPU time for the
transient approach is determined retroactively. In practice,
the pseudo transient approach may therefore require signif-
icantly more CPU time than indicated in Figures 5-8 and in
Table 2, since the number of time steps required to approach
steady state are generally not known ahead of the simula-
tion.

Limitations of ASIGNing

The above examples have shown that ASIGNed solutions
can be obtained over a wide range of variances. However, it
must be emphasized that the success of the method is not
unlimited due to the first-order character of the analytical
solution. As was indicated before, terms of second and
higher order that were neglected in deriving the perturbation
equation (8) and (14) become significant at higher variances
of/' and/or a'. Hence the (initial guess) solutions (10) and
(15) deviate more strongly from the steady state solution to
(2b) as the perturbations increase (compare Figures 2 and 3).
Once the difference between the two solutions is larger than



4146 HARTER AND YEH: TECHNICAL NOTE

Water Table at Bottom
CPU time [sec.]

104

103

10°

10'1 -

1 , , , , , , r T—^-, 3
transient FE with uniform initial guess ±

variance of log Kg

Fig. 7. CPU time (seconds) as a function of a} for the quasi-analytical spectral method, the ASIGNed numerical
solution (without computation of the initial guess), and the transient numerical solution. The numerical cases are
computed with boundary conditions 5 and 6.

the convergence radius of the Newton-Raphson method, a
direct steady state solution is impossible to obtain even with
the quasi-analytical initial guess. Our experiences with the
above examples have shown that ASIGNing is successful up
to variances of 5 in the logarithm of the unsaturated hydrau-
lic conductivity o-?n K, with A < 0.01 [cm'1] and o£ < 0.006.
Since a determines the degree of nonlinearity, the mean and

variance of a: or In a and its correlation to/' are expected to
be critical to the success of ASIGNing.

To explore the limits of the method additional ASIGNed
simulations are implemented with independent random pa-
rameters /', a', and y' and a wider range of means and
variances in a as before. First, the In a case described above
is repeated with independent parameters / and y'. The

CPU time [sec.]
Varying Domain Size

104

103

10'

transient FE with uniform initial guess

domain size (# of elements)

Fig. 8. CPU time (seconds) as a function of domain size: comparison of the quasi-analytical spectral method, the
ASIGNed numerical solution (without computation of the initial guess), and the transient numerical solution. The
numerical cases are computed with boundary conditions 1.
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TABLE 2. Results of the a Case(2) and the In a Case Experiments

a Case(l)
a Case(l)
a Case(l)
a Case(2)
In a Case
In a Case
In a Case

°/'
(Saturated
Hydraulic
condition)

0.1
1.5
6.0
1.5
0.1
1.5
6.0

°"[hi K]'
(Unsaturated

Hydraulic
Condition)

0.062
0.97
4.05
1.36
0.062
0.96
3.99

CPU Time, s
(Pseudotransient)

559
758
N/A
695
563
743
N/A

CPU Time, s
(Steady State With

ASIGNing)

16.6
34.8

211
24.6
16.6
39.4
63.9

N/A, transient solution did not converge.

variances of the independent y' in these cases are 1/100 of
the variance o-f specified, just as in the first In a case with
dependent random fields. The CPU times required for the
two lower o-f cases are 50% larger than those for the
dependent case. Convergence is achieved except for the
case of aj' = 6.0. In this independent In a case, convergence
is obtained with o-f < 4.5, which results in an unsaturated In
K variance <j\n K> < 5.

To separate the effects of/' and y' at a given geometric
mean (a}g = 0.01 [cm"1], we determined the largest ay for
which convergence is achieved at different o-f. At both o-f =
0.1 and 1.5 solutions are obtained if cry < 0.5, although the
range in head variance for cry = 0.5 spans from 1470 cm2 to
2300 cm2, respectively, and the range of unsaturated hydrau-
lic conductivity variances spans from 1.9 to 3.5, respec-
tively. For o-f =4, solutions are obtained with cry < 0.2. At
even higher variances of cr^ = 4.7, the maximum usable o-y
reduces to 2 x 10 ~5. Increasing the geometric mean of a to
0.1, which is typical of a coarse sand, shows that the
variance of y' is slightly more limited in applications with
ASIGNing the In a case. At variances &} = 1, 5.3, and 7.4
the maximum usable o-y are 0.024, 0.01, and 0.0001, respec-
tively, resulting in unsaturated hydraulic conductivity vari-
ances oin K> = 3.0, 4.0, and 4.2, respectively.

In the case of independent, normal distributed a where the
first-order perturbation solution is not based on an approxi-
mation similar to (13), ASIGNing is also successful for a
large range of A = (a) without loss of CPU efficiency. At
o-f = 1.0 and A = 0.1 [cm"1], the largest possible cr2, is 0.01
(<r\nK' = 2 -°> <*h' = 235 cm2)> and at A = 0.5 [cm"1] it is
0.007 (0£^' = 0.77, vl' = 9 cm2). At smaller variances of
a' and A = 0.1 [cm"1] ASIGNed solutions are generally
possible if oj2 K> < 4.3. These limits are obtained for the
particular seed used to generate the random numbers cjt and
dji in (11). For other seeds the limits vary slightly and should
therefore be taken as guidelines only.

The experiments show that three parameters seem to be
most important to define the range of solutions for which
ASIGNing is possible: the variance of the unsaturated hy-
draulic conductivity, the mean of a, and the variance of a,
where the latter two parameters mainly identify the degree of
nonlinearity in our problem (2). For the mean of a < 0.01 or
the mean of In a < -4.6, cases resulting in cr2

n K, < 4 (or even
5) are solvable with ASIGNing as long as, for example, in the
In a case the variance of y' < 0.5. At (a)g = 0.1 and for a
given o-f ASIGNing is successful for o-y such that crj2n K, does
not exceed 4. The a case remains solvable for cr2, < 0.01 at
A = 0.1 [cm"1]. These findings seem to be independent of

the correlation between /' and a' or y', independent of o-f
(so long as c^2

 K> does not exceed 3-4), and independent of
the resulting head variance. At higher A the restrictions on
the maximum conductivity variance are tighter, but overall
the method has been shown to be successful for a broad
range of parameters encountered under realistic field condi-
tions.

Extensions of ASIGNing
It has already been emphasized that the boundary value

problem for the initial guess, which is given by the analytical
solutions (10) or (15), is different from the boundary value
problems stated above for the numerical solver of (2). For all
the above boundary value problems the analytical solution
provides an initial guess based only on the assumption of an
unbounded domain, while the numerical solutions are math-
ematically speaking all subject to bounded domain condi-
tions. It is important to understand that the quasi-analytical
solutions for all of the cases tested serve only as first
approximations and are not a defining part of the numerical
solution. The set of boundary conditions is intended to show
the variety of boundary conditions, for which the single
analytical solution (10) may successfully be used as initial
guess such that the steady state finite element simulation of
(2b) converges directly.

Theoretically, it is possible to generate quasi-analytical
solutions to (8) not only with different boundary conditions
than the numerical solutions to (2), but also with a different
input set {F*, crj?*, A*, cr2,*, H*} to better approximate the
solution of (2) subject to the input parameter set {F, o-f, A,
o-2', H}. This approach may be taken because the spectrally
generated random fields of {/', a'} and {/'*, a'*} are
identical in structure when different variances are specified,
if the same seed is used for the spectral random field
generator. Recall from (11) that dZp(k), p = /', a' are
independent random numbers with a variance equal to
Spp(k)dk. Since the spectral density function Spp(k) is the
Fourier transform 3F of the covariance function (16), where
o-p is independent of location x or spectral wave number k,
it can easily be shown that the spectral density is a linear
function of the variance o-p:

S p p ( k ) = cr>(Cor,,(b)) (17)

where Corpp(b) = Covpp(b)/o-p is the normalized correlation
function. Then both dZp(k) and their inverse fast Fourier
transforms/'(x) and a'(x) are linearly dependent on o-2. The
quasi-analytical head solution h' will also produce identical
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structures for different cr^. They merely differ in the amount
of excitation in their perturbed structure as shown by the
quasi-analytical solutions in Figures 2 and 3. The same is not
true for the head solution to (2b) due to its nonlinear
character. Yet the structures are similar as shown by the
ASIGNed head solution in Figure 2 produced from random
fields of correlated/' and a' with a} = 0.1 and the ASIGNed
head solution shown in Figure 3 which is based on random
fields with cr} = 6.0.

It is therefore conceivable to generate the initial guess
solution with a meaningful, but arbitrary set of parameters
{F*, o-f*, A*, o^'*, //*} to produce a certain structure in
the initial head h', which is closer to the solution of (2)
subject to {F, Of,A, cr%>, H] than an initial head that is also
based on (F, o-f, A, o-^, //}. The practical procedure is then
as follows: after obtaining the initial head h' with an arbi-
trary set {F*, crj?*, A*, cr^*, //*}, one regenerates/' and a'
with the same seed, but the input set {F, vj>, A, o-%>, //}, and
then precedes to solve the steady state numerical solution
with the latter random fields of/' and a' but the former h' as
initial guess. The water table problem a case (1) with the
boundary condition 6 is a simple example of such an appli-
cation: the initial head solution is based on a uniform mean
head //"*; the numerical simulation solves a problem of
vertically varying H(z). The number of variations in this
method is potentially endless and depends directly on the
problem type. Further research is warranted, but it is
beyond the scope of this paper to further investigate those
possibilities.

In principle, ASIGNing can also be applied for cases
where a solution to (2b) is sought with an unsaturated
conductivity function K(h) different from (3). In this case the
parameters Ks and a in (3) have to be determined such that
the head field from (10) is similar to that solving (2b) with the
desired K(h) function. A prominent example is the use of
Van Genuchten's [1980] constitutive relationships for K(h)
and 0(h) in the numerical solution of (2). While Gardner's
[1958] equation for K(h) (3) is necessary for the derivation of
(10), it is in many practical circumstances of rather limited
use while Van Genuchten's K(h) model has generally been
more applicable to field soils. ASIGNing a Van Genuchten
based solution to (2b) may be possible by defining equiva-
lent parameters/' and a' for (10) analytically [Russo et aL,
1991]. This is cumbersome, however, since an equivalent/'
and a' need to be determined for each random replicate of
Van Genuchten parameters. Alternatively, the equivalent
moments {F*, oy5*, A*, cr%>*} of the K(h) parameters in (3)
can be graphically matched by trial and error with those
desired for the Van Genuchten K(h): the parameter set {F*,
erf*, A*, o-%>*} is manually adjusted such that a random
sample of Gardner's K(k) curves best matches against a
random sample plot of Van Genuchten's K(h) curves. The
latter approach may be time-consuming for a single simula-
tion, and a transient solution is probably obtained faster. In
most cases, however, ASIGNing will be used as part of a
Monte Carlo simulation, and a single trial and error defini-
tion of a suitable parameter set for obtaining the initial guess
may solve hundreds of Monte Carlo runs.

take prohibitive amounts of CPU time or lead to divergence
in the iterative solution process. Typically, a uniform initial
guess is provided by the user, even if the steady solution is
nonuniform. For problems involving heterogeneous param-
eter fields, e.g., flow through variably permeable porous
media, such an initial guess is generally so different from the
solution that steady solution techniques fail and transient
time-marching or pseudo transient methods must be em-
ployed, which are associated with high computation time.

For the large range of heterogeneous, unsaturated flow
problems presented we developed a quasi-analytical spectral
solution technique, which is a first-order linearized pertur-
bation approximation to the governing nonlinear stochastic
equation. This quasi-analytical solution is used as an initial
guess solution in a finite element model which solves the
nonlinear governing flow equation (2b) (analytical solution
as initial guess to numerical solver (ASIGNing)). ASIGNing
renders up to two orders of magnitude of CPU time savings.
To our knowledge this is the first time stochastic analytical
solutions have been combined with their respective numer-
ical solutions. We have shown that the methods can success-
fully be applied to a wide range of field conditions with
average a ranging from 0.001 [cm"1] to 0.1 [cm"1] and the
variance of the log-unsaturated hydraulic conductivity being
as large as 5. An even wider range of applications is
conceivable once the parameters used to obtain the initial
guess solutions are determined separately instead of using
the identical set of parameters for both the initial guess and
the numerical solution. ASIGNing works for correlated and
uncorrelated/' and a' fields alike, and can be adopted to
solve problems involving lognormal distributed a. The suc-
cess of this particular combination of a quasi-analytical with
a numerical method is very encouraging, since the nature of
this technique is very general and many related problems in
fluid dynamics may be solved similarly.

Another advantage of this particular approach is that
random fields are generated intrinsically instead of sepa-
rately. Furthermore, the first-order perturbation solution
used here as initial guess allows to model vertical soil
domains with random head boundaries thus eliminating
boundary effects to the degree to which the first-order
solution is accurate. Partial boundary conditions can alter-
natively be introduced through conditional simulation tech-
niques, a possibility that is currently under research. CPU
time enhancements of one and a half to two orders of
magnitude allow for the first time the implementation of
Monte Carlo techniques to solve unconditional and condi-
tional stochastic unsaturated flow and transport problems
(T. Harter, unpublished manuscript, 1993).
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CONCLUSION
In many instances and particularly in the case of hetero-

geneous, steady, nonlinear problems, numerical solutions
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