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flow and transport of chemically reactive solute 
through porous media under variably saturated 

conditions 
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A three-dimensional numerical model is developed for the simulation of water 
flow and chemical transport through variably saturated porous media. The 
nonlinear flow equation is solved using the Galerkin finite element technique with 
the Picard iteration scheme and a continuous velocity field is obtained by separate 
application of the Galerkin technique to the flux equation. A two-site 
adsorption-desorption model with a first-order loss term is used to describe the 
chemical behavior of the reactive solute. The advective part of the transport 
equation is solved with one-step backward particle tracking while the dispersive 
part is solved by the regular Galerkin finite element technique. Preconditioned 
conjugate-gradient-like method is used for the iterative solution of the systems of 
linear simultaneous equations to save on computer memory and execution time. 
The model is applied to a few situations and the numerical results are compared 
with observed and analytic values. The model is found to work quite well, even 
near very sharp fronts. 

Key words: variably saturated flow, chemical transport, finite element method, 
modified method of characteristics. 

I N T R O D U C T I O N  generally based on the governing equation for flow 
under variably saturated conditions (Richards equation) 

Until the early 1970s, studies of  flow and transport  and the classic convection-dispersion equation. One of 
through unsaturated soils were limited to the upper 1 m the difficulties in predicting the movement  of  con- 
of  the vadose zone and were done primarily with taminants lies in our lack of ability of  solving these 
agricultural purposes in mind. Because of the important equations accurately and efficiently for general cases. 
role of  the vadose zone in groundwater pollution The dependence of hydraulic properties of  unsatu- 
problems, in the last 20 years, hydrologists have rated media on the pressure or degree of saturation 
become increasingly interested in studies involving makes the Richards equation nonlinear. The degree of 
unsaturated flow and transport  problems on scales of  nonlinearity of the equation, in turn, depends on the 
meters and tens of meters. At such large scales, the extent of the nonlinearity in hydraulic properties and 
hydrological properties of  the geologic media exhibit a pressure relationships of  media. For general conditions, 
large degree of spatial variation. For investigating and numerical methods combined with some iterative 
predicting contaminant  migration in large-scale geologic schemes are required to obtain the solution to this 
media, mathematical modeling is generally required, equation. Since hydraulic properties and pressure 
However, analytic solutions to such problems are almost relationships of  some porous media are highly non- 
impossible to obtain and numerical modeling becomes linear, difficulties in obtaining the convergence of the 
the method of choice for analyzing and predicting the numerical solution and serious mass balance problems 
movement  of  contaminants through the subsurface have often been encountered (e.g. Celia et al.5). 
media (Anderson') .  The mathematical  models are The solution of the convection-dispersion equation 

requires the knowledge of the velocity distribution 
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distribution obtained by numerical models. As is where hydraulic and geochemical properties of media 
customary for finite element flow simulation, the nodal are inherently heterogeneous. 
heads are treated as unknowns and are assumed to vary 
linearly in triangular prism elements and tri-linearly in 
rectangular prism elements. This results in a constant GOVERNING EQUATIONS 
specific discharge value within each element and a 
consequent discontinuity in the nodal values of the Equation of flow in variably saturated media 
specific discharge. Such a discontinuous discharge field 
may lead to undesirable numerical solutions of the The following equation is taken as the equation 
convection-dispersion equation (e.g. Goodel2). governing three-dimensional flow of water in porous 

Another difficulty in solving the convection- media: 2 
dispersion equation can be attributed to the change in 
the nature of the equation from parabolic to almost 0 (Kij (t; '+ X3)j = ( C +  ~ S s ) ~ - -  q~ in f~ 
hyperbolic as the advective transport becomes promi- Oxi \ Ox I 
nent relative to the dispersive transport (manifested by a ( 1 ) 
large Peclet number). While a parabolic partial differ- 
ential equation is amenable to the commonly used where xi are the spatial coordinates (i = 1,2,3 with x~ 
numerical methods like finite difference or finite being vertical); K,j is the hydraulic conductivity tensor 
elements, numerical solution to a hyperbolic equation which is a function of moisture content or pressure 
generally introduces numerical dispersion and oscil- under unsaturated conditions; V) is the pressure head; C 
lation near the sharp front. This problem can be tackled, is the specific moisture capacity and is defined as dO/d~, 
to some extent, by a properly chosen grid size and time where 0 is the volumetric moisture content; 13~ is the 
step at the expense of increased computer time and index for saturation and is 0 in the unsaturated zone 
memory requirement. In three-dimensional problems, (~ < 0) and 1 in saturated zone (~/,, > 0); S~ is the specific 
however, it may not be feasible to do so due to computer storage defined as the volume of water released from 
memory and execution time limitations. Various alter- storage per unit volume of saturated soil due to unit 
native approaches have been suggested in the past to decrease in the pressure head: t is the time; qs is the 
reduce the numerical error near the sharp fronts. These source/sink term (positive for source) which represents 
include the implicit diffusive finite difference method, 27 the volume of water added/removed per unit time to/ 
upstream weighted finite element method, 13 method of from a unit volume of soil; and f2 is the solution domain. 
characteristics, 14 modified method of characteristics, 6 Einstein's summation convention (over repeated index) 
Laplace transform Galerkin technique, 24 and the has been used in the above equation and throughout this 
zoomable hidden mesh approach, z9 The method of paper. 
characteristics (also called the forward particle tracking) In this study the saturated hydraulic conductivity and 
and the modified method of characteristics (backward the specific storage are assumed to be functions of space 
particle tracking) have been combined successfully by only and are considered independent of time. Also, since 
some investigators. 3~8 This scheme has been shown to in the unsaturated region of the flow the storage is 
handle the sharp fronts very well but is computationally controlled predominantly by the moisture content as 
intensive, compared to the compressibility effects, the index 13~ is 

Most of  the schemes described above perform well put equal to 0 in unsaturated zone. In saturated porous 
under saturated flow conditions, but have not been media, the specific moisture capacity, C, is 0 and the 
rigorously tested for an unsaturated case. Also, there are specific storage is generally expressed by Ss = 
very few numerical codes for simulation of three- %,.(/3p + riB,,), where % is the unit weight of water, r/is 
dimensional flow and transport of reactive chemicals the porosity, and 13p and Bw are the coefficients of 
in variably saturated media. In this paper, the authors compressibility of the porous medium and water, 
combine several previously developed ideas and con- respectively. 
struct an efficient, three-dimensional finite element 
model, which eliminates the difficulties discussed Equations for transport and fate of contaminants 
above. The model was applied to several scenarios 
where either analytical or observed data are available The complex process of dispersion, adsorption and 
for verification purposes. In additon, analytical sol- decay of chemicals in porous media flow is not very well 
utions of the velocity field in a two-dimensional understood at the present time and various models have 
unsaturated medium with hypothetical hydraulic prop- been proposed to describe the interaction between 
erties were derived and used to verify the accuracy of the solute, pore-water and the solid matrix in a porous 
numerical model. The authors believe the development medium. These models include a simple linear isotherm 
of the model will enhance our ability of predicting flow equilibrium model, 2t a linear reversible adsorption 
and fate and transport of contaminants in the field, (one-site) model, 17 a two-site adsorption-desorption 
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model, 423 mobile-immobile zone physical partitioning if we relate the parameters of these two models as: 
model, 8'26 mobile-immobile zone with ion-exchange ~5 OimRimCim.  °~r 

and the two-site model with a first-order loss. 16 It has c~, - kl = ~mm; 
been shown 19 that although the physical partitioning P~ 
model with mobile and immobile zones and the two-site ar f*kp~ 
chemical partitioning model are completely different k2(1 - f )  = Ri,,,Oi--~; k 3 -  0,,7 (4) 

concepts, they result in the same mathematical equation, in which 0,, and 0j,, are the mobile and immobile phase 
Also, Lassey's ~6 model is quite general and encom- water contents; Cm and Cim are the mobile and immobile 
passes, as special cases, the physical and chemical zone solute concentrations; f *  is the fraction of solid 
partitioning models. In this paper, therefore, the two- matrix in contact with the mobile zone: k is the 
site model with first-order loss was used to represent the distribution coefficient; c~r is first-order rate constant; 
complex process of chemical transformation of the and Ri,,,(= 1 + pb(1 -f*)k/Oi,, ,)  is the retardation factor 
solute, corresponding to the immobile zone. The similarity 

Using the formulation of Cameron and Klute 4 and between the two models is made use of to compare the 
adding a first-order loss term, 16 the equation governing results of the numerical model with those obtained from 
the transport of a chemically reactive solute is: an analytic solution of three-dimensional mobile-  

0 / Oc~ Oc Oc O(pbc*) immobile partitioning model. 
- -  Di:  . . . .  0 ox,( ot 

+fk2phc*k + q.~(c- Cs) in f~ (2a) NUMERICAL SCHEME 

with 
Equation (1) is solved using the Galerkin technique by 

O(PbC*~) - -  klOc - k2pbc*k + O(pbce*) (2b) representing the pressure at any point (xl. x2, x3) in the 
Ot Ot domain at any instant t as: 

where c is the solute concentration in the liquid (in units ~(Xl, x2, x3, t) = Nl(xj,  x2. x3. )~" l(t) (5) 
of mass per unit volume); c ~ is the adsorbed phase 
concentration (in units of mass of adsorbed chemical per where N I a r e  the shape functions associated with node I 
unit mass of porous media); c~ is the kinetic fraction of and ~b I is the value of ~ at node I with the range of  I 
the adsorbed chemical and c,',(= k3Oc/pb) is the equilib- being from 1 to N N  (NN is the total number of nodes). 

Linear shape functions for triangular prism elements rium fraction; kl is the forward (adsorption) rate 
and tri-linear shape functions for the rectangular prism constant, k 2 is the backward (desorption) rate constant 

and k 3 is the equilibrium cons tan t ; f  is the loss coefficient elements are used in this study. In a similar way, the 
for the selective first-order removal; qi are the specific hydraulic conductivity tensor and the moisture capacity 
discharge components; Pb is the bulk density; qs is the term are represented as: 

injected/pumped fluid volume per unit aquifer volume; [K] = N1[K] 1 (6a) 
and Cs is the solute concentration in qs. D i j  is the 
hydrodynamic dispersion tensor computed on the basis and 
of the specific discharge and is given by: C = N I C t (6b) 

Di  j = ( a  L _ o:1_ ) q"q___2 + a 1 _ q 6 i  / (2c) where [K] and C are the conductivity tensor and the 
q moisture capacity at any point in the domain at any time 

in which aL is the longitudinal dispersivity; a r  is the and [K] 1 and C 1 are the nodal values. Strictly speaking, 
transverse dispersivity; q(= ~ )  is the magnitude of eqns (6a) and (6b) are inconsistent with eqn (5) because 
the specific discharge and 6~j is the Kronecker delta of the nonlinear relations between the pressure head and 
(6gj = 1 if i = j  and 0 otherwise), the unsaturated hydraulic conductivity, and relations 

As mentioned earlier, this model is equivalent to the between the pressure head and the moisture capacity 
mobile-immobile physical partitioning model term. Errors due to this inconsistent approach may 

however be resolved by using small elements. After these 
O {D..OC,,'] OC,,, OCm v a l u e s o f ~ , K a n d C a r e p u t i n e q n ( l ) , a r e s i d u a l R ~ i s  

O x  i ~,, 'J Ox j  J -- q i ~ x  i = (Ore + pbf*k)  Ot obtained as:  

OCi,,, (3a) R~ ~xi (NcK~) ((NJ~SJ) + x3) -}- (Oim Jr- (l - J" )pbk )  Ot = 

0 with - ((NLC L) + 3~.Ss) -~ (Uj~ J) - q,. (7) 

OCi,, 
(Oi,,, + (1 - f * ) p b k ) ~  = c~(Cm - Cim) (3b) Now using the Galerkin scheme, N N  equations are 
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obtained as follows: scheme is used to accomplish the convergence of the 
solution of the nonlinear algebraic equations. Auto- 

I ~2 = 0 for I = 1 to NN (8) matic time is used to the of R~,N Id stepping ensure convergence 
~2 the nonlinear iterations required because of the depen- 

These equations can be more conveniently and concisely dence of the coefficient matrices on the pressure head. 
written in the matrix form, after making use of the The convergence of iterations is checked by comparing 
divergence theorem and noting that the shape function the maximum head difference between two successive 
for any node is nonzero only in elements containing that iterations with a pre-specified tolerance. If the number of 
node, as: iterations exceeds a specified maximum or if the solution 

0 is found to be diverging, the time step is reduced by a 
[A ]{z~} + [B] ~ {~} + {F} - {Q} = 0 (9) specified factor. On the other hand, if the convergence is 

very rapid, the time step is automatically increased. 
where {W} is the vector of the nodal values of the To avoid the loss of one order of accuracy due to the 
pressure head; [A] is the conductance matrix; [B] is numerical differentiation in approximating the s~ecific 
the storage matrix; {F} is the gravity vector; and {Q} is discharge field, a finite element type procedure 22'28 was 
the flux vector. These matrices and vectors are given by employed, in which the velocities are obtained from the 
the following equations: computed head field by applying the Galerkin technique 

I ONI( ~ j )  separately to the flux equation: A,j = Z v,-~x i (NLKL) dV (lOa) 

e qi = -Kij~---- (~ + x3) 12) 

= ((NLC L) + ~sS,)N/NI dV (lOb) 
BIJ Ze V" Using the same shape functions, NI, for the velocity 

I ONr components, we obtain: 
FI----- Z wuAi(NLK~)dV~ (10c) [Aq]{qi}+[Bqi]{¢}+{Cqi}=O f o r / =  1 2,3 

e 

Ql = ~ ( Jw -Nlqs dV + L N/qb dA ) (10d) inwhich: 

in which the integral is performed over all elements Aq,.,=~-'~,[ N, NjdV (14a) 
containing node I as one of their nodes and the "U J ,  ,'" 
boundary integral in eqn (10d) is evaluated along the ¢ 
boundaries of such elements which lie along the bound- BqilJ = ~e J N/Kij ONj 
ary of the domain with specified normal flux qb. lie ," ~ dV (14b) 

represents the volume of the element and A e its surface S-" f 
area. Equation (9) is solved by using a time-weighting Cqi, = ~e J Nigi3 dV (14c) 
scheme which results in the following equation: 

Although this procedure involves solution of NN 
IL'J~{~} k+l simultaneous equations for each velocity component, 
[ D I X  

~ [ A ] + A  tJ the coefficient matrix is time invariant and has to be 
[B]'] inverted only once during the entire simulation. 

+ At j {~}k+{F}- - {Q}  (11) Equations (2) are solved using one-step reverse 
particle tracking for the advective transport (called 

in which the superscript denotes the time level and ~ is MMOC for modified method of characteristics) and the 
the time-weighting factor, regular Galerkin FEM for the dispersive transport. In 

The set of algebraic equations are, then, solved using the MMOC, the partial time derivative in eqn (2a) is 
the pre-conditioned conjugate gradient method. 2°'3~ The converted to a total derivative along the characteristic 
incomplete LU (Lower and Upper triangular) decom- lines by using: 
position of the coefficient matrix is used as a pre- 
conditioner to enhance the convergence properties of the Dc _ Oc qi Oc 15) 
method. Even with zero level of fill-in during the Dt Ot+O(l+k3)Oxi 
decomposition process, the convergence of conjugate The finite difference form of the time derivative can be 
gradient iteration was found to be adequate. Details of written as 
the procedure are given in Yeh and Srivastava. 3° Only 
the nonzero matrix elements need to be stored, thus D c  c k+j- ck,, 
saving a huge amount of computer memory as Dt A t  
compared to the direct banded matrix solvers, more so in which c~, is the concentration at the time level k at the 
in the three-dimensional case. The Picard iteration corresponding spatial position along the characteristic 
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line. After applying the Galerkin technique to the adsorbed phase concentration is obtained from: 
dispersive part of the equation, the concentration at a ,k+~ 
time step is given by: c k = 

( ( - - - ~ )  ) ( l - ' ) k lOAtck  ~klOAt k+l 
~kl 4-1+ka [Bc] {ck+t} ( 1 - k z ( 1 - ~ ) A t ) c ~ ,  k+ Ph + P~ c 

~[ac] + 1 + k2~A t I + k2~A t 

( ( 1 - , ) k l )  l + k 3  (20a) 
= - ( l - ~ ) [ A c ]  fS--/,-~St [Bc] {ck}+ $ 7  

and 

[B~] {c~ k} - {Qc} (16) c• k+l = k3 0 k+l (20b) × IB"]{c"~} + 1 + k 2 ~  t - - c  
Pb 

in which: If the time weighting factor ~ is taken to be 0, we 
i ONION, obtain an explicit scheme which, along with the lumping 

A~, = Z D 0 ~ dV (17a) ,,~ ~ , . of the mass matrix, results in direct evaluation of nodal 
e concentration at time level (k + 1) without solving a set 

B , , j=  ~ I  ONINjdV (17b) of linear simultaneous equations. This results in 
considerable saving of computer time and storage 
space. A value of ~ less than 0.5, however, restricts the 

B" = Z [  (17c) time-step size to ensure stability of the numerical 
c'J ~ v  ~phk2NINJdV scheme. In case of MMOC, though, comparatively 

larger time steps can be used without producing 
~, ( I  Ntqs(C- Cs) d V -  I N'qcb dA) i n s t ab i l i t ybecause theconvec t ivepa r to f the t r anspor t  

Qc, = w A ~ is handled by reverse particle tracking. The disadvantage 
(17d) of using large time-step size is decreased accuracy of 

results because of the time discretization. On the other 
The boundary integral in eqn (17d) is performed over hand, it also implies less accumulation of error due to 
boundaries with specified dispersive flux qcb. interpolation of concentration values during back- 

The location for the determination of ck is obtained tracking because the number of time steps will be 
by fourth-order Runge-Kut ta  integration of the smaller. The relative magnitude of these two counter- 
equation: acting processes will be largely problem dependent. 

dx~ q~ Comparison of results from the explicit and implicit 
- (18) schemes indicates a saving of about 25% in the CPU 

dt 0(I + k3) time for the explicit method for large problems involving 
resulting in the following expressions: tens of thousands of nodes and up to 60% saving for 

smaller problems. 
dx~ = At(q~+l)x~ (19a) After solving for the head in the flow part and the 

0k+l(l +k3) concentration in the transport part, a mass balance 
Xi 

check for both water and solute is performed. Almost in 
+ q~ ):'~+tdxl/2/ (19b) all applications described in the next section, the mass dx~ = A t(q~ +l k 

(0 k+l + ~k)x_,_(dxl/2)( 1 + k3 ) balance was quite satisfactory and the error was mostly 
less than 1% for water flow and 5% for solute transport. 

k 
dx~ = A t(q~ "+l + qi )x~+(dxT/2 ) (19c) 

(0h+l  + Ok)x,+(dx~/2)(l + k3) 
APPLICATIONS 

k 

dx 4 = _ A t(q i )x,+dx~ (19d) The model is first applied to the transport of a reactive 
O ,+dx,(l + , chemical in one-dimensional saturated flow for which 

and analytic solution is given by Cameron and Klute. 4 
Breakthrough curves obtained from the numerical 

xi k = xi + ~ (dx) + 2dx ~ + 2dx ~ + dx~) (19e) model are compared with experimental observations. 
The next application involves two-dimensional unsatu- 

During the back-tracking algorithm, if the particle rated flow and transport towards the water table. 
crosses an inflow boundary, it is assigned the concert- Analytic solution to the flow part of the problem is 
tration at the boundary. At no flow boundaries, the derived (see Appendix), if an exponential relationship is 
particle is reflected back into the domain. After solving assumed between the pressure and conductivity and 
for the liquid phase concentration from eqn (16), the between pressure and moisture content. Finally, the 
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Fig. 2. Schematic diagram for two-dimensional unsaturated 
Fig. I. Comparison of numerical solution with observed flow and transport. 

breakthrough curve for Atrazine. 

model is applied to simulate a three-dimensional nodes, thus eliminating the interpolation error. Addi- 
transport situation for which analytic solution is tional runs with Courant  number equal to 2 and 0.5 
available for various types of  solute input conditions if gave almost identical results, indicating that the 
we use the physical partitioning model.It interpolation errors do not play a major role in this 

problem. 
ID saturated flow and transport 

2D flow and transport in variably saturated media 
The numerical scheme described above is first used to 

simulate the transport  of  Atrazine in a Honeywood silt The second application of the model is to the case of  
loam soil column under a saturated condition. Break- solute transport in a hypothetical soil profile under 
through data were collected by Elrick et al. 9 Cameron steady flow toward the water table from a strip source. 
and Klute 4 present an analytic solution to this problem Steady-state flow and velocity fields were simulated first 
assuming a semi-infinite medium with concentration and a constant concentration boundary condition was 
type boundary condition at the upstream end and zero then imposed on the strip source to simulate the 
concentration at infinity. Nondimensional parameters transport of  solute under the unsaturated condition. 

are defined as: Exponential relations are assumed between the pressure 
rt  vL c and conductivity and pressure and moisture content 

T = ~ - :  B = ~-~; C = - -  co relationships of  the hypothetical soil. Figure 2 shows the 
KL Lk, Lk2 schematic of  the solution domain and the boundary 

= - - :  K, = - - ;  K3 = k3 conditions. Initial conditions are assumed to be 
v v hydrostatic and the parameters used are: 

where t is time; L is the length of the medium; v is the 
seepage velocity; D is the hydraulic dispersion coef- K,.x = K~.: = l cm/h:  a = 0-01/cm 0 s =0.44;  

ficient; c0 is the specified concentration at the upstream 0, = 0.067; aL = aT = l '0cm;  L = 15cm; 
end and B is the Brenner number. 

H = 1 0 c m ;  a = 6 c m ;  b = 9 c m ;  q = 0 . 5 c m / h  
For the numerical simulation, B is taken as 10 and the 

breakthrough curve (plots of  dimensionless time versus where K~i is the saturated conductivity in the/-direction; 
dimensionless exit concentration) for the chemical a is pore-size distribution parameter; 0~ is the saturated 
Atrazine, with K 1 -~ 0.48, K 2 ---- 0.18 and K 3 = 3.52, is water contenL and Or is the residual water content. 
shown in Fig. 1. The mesh Peclet number is kept at 0.4 The domain was divided into 2500 elements with 5202 
and the Courant  number is equal to 1. The time- nodes for the 3D model (one element wide in the 
weighting factor in this simulation is 0.5, resulting in the y-direction) with Ax = 0.3 cm, Ay = 1-0cm and 
time-centered (Crank-Nicholson)  scheme. It is seen that _/.Az = 0.2 cm. To check the accuracy of  the numerical 
the M M O C  duplicates the observed breakthrough data solution, analytical solutions for the velocity corn- 
very well, though it should be mentioned that the ponents in x- and z-directions were derived and are 
reaction parameters were obtained by fitting the analytic listed in the Appendix. Figures 3(a) and (b) show the 
solution to the observed data. 4 Also, taking the Courant  profiles of vertical velocity components  obtained from 
number equal to 1 results in nodes being tracked to the numerical model at sections 1-1 and 2 -2  respect- 
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Fig. 3. Comparison of velocity profiles along (a) section 1-1 and (b) section 2 2. 

ively (see Fig. 2). Also shown are the analytic results 3D flow and transport in saturated media 
from the steady-state solution, and clearly the numerical 
results are in excellent agreement with the analytic The final application of the model is to the transport of  
solutions. This indicates that, for this problem, the a solute pulse introduced in a rectangular prism portion 
inconsistency of assuming both the heads and the of  a three-dimensional porous medium (Fig. 6). The 
velocity components as linear does not adversely affect flow is assumed to be uni-directional and the medium is 
the results. It was, however, observed that the velocity fully saturated. An analytic solution to this problem for 
components at the inflow boundary obtained from the infinite medium and with mobile- immobile  physical 
numerical solution were slightly different from the partitioning model is available (Goltz and Roberts; ]1 
specified values. Also, a very small velocity component  their equations (4) and (16)). The parameter values for 
was obtained at the no-flow boundaries. This was the first simulation were taken as those given in Goltz 
thought to be a result of  discretization error and was and Roberts jJ (their Fig. 3), with slight modification: 

handled by forcing the components at the boundaries to 0,,, = 0.342: Oim = 0.038: R,, = 2-78: R,,, = 5.00; 
be equal to the specified values prior to the solution of 

the set of  equations, v,,, = 0.091 m/day;  Dmx = 0 '02m2/day;  D,~y = Dr, z 
Simulated solute distributions at various times are 

depicted in Fig. 4. The simulated distributions appear =-0.0016mZ/day; c~ r - -0 .006/day  

reasonable. However, in the absence of analytic The half-width, length and depth of the solute pulse 
solutions for solute transport for the specified flow were taken as L = l m, M = 0.5m and N = 0-5m and 
field, we cannot verify the accuracy of the results. A the sampling point was located at L = 3m, m = 0 and 
check of  mass balance shows that M M O C  has quite n = 0 m  (from the center of  the pulse). The equivalent 
good mass balance properties. The mass balance error, parameters for the chemical transport  model are: 
as mentioned earlier, was less than 5%. To test the 
model against high Peclet numbers, the same problem k I - -0 .0175/day;  (1 - f ) k 2  = 0.0316/day; 
was solved with zero dispersivity (c~ L = c~ r = 0) and the k 3 = 1-78 
corresponding results are shown in Fig. 5. The sharpness 
of the solute profile as compared to the previous figure is Also, the longitudinal dispersivity was taken as 0.2198 m 
evident from these figures, and the transverse dispersivity as 0-0176 m. The specific 
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Fig. 7. Breakthrough curve at the sampling point with the 
solute pulse coinciding with the finite element grid. 

discharge qx is 0-0311 m/day. The domain modeled was 
chosen to be 20 m × 2 m × 2 m, which was divided into 
6400 elements with 8181 nodes with Ax = 0.2m, observed in the concentration contours along section 
A y = 0 . 2 5 m a n d A z = 0 - 2 5 m .  1-1, a sample of  which, at 200 days after the 

Figure 7 shows the breakthrough curve at the introduction of the pulse, is shown in Fig. 8. The main 
sampling point computed from the analytic solution reason for this difference was thought to be stemming 
and also from the numerical method using the MMOC.  from the initial distribution of  solute in the numerical 
Although a fair matching of the time of arrival of  the scheme. The finite element grid is constructed in such a 
peak is observed, the numerical solution is considerably way that the rectangular prism of the solute pulse 
higher than the analytic one. A similar trend was coincides with the discretizing nodes. As a result, the 
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Fig. 8. Concentration contours along section 1 1 at 200 h. 



284 R. Srivastava, T.-C. J. Yeh 

f the pulse halfway in an element. The numerical results 
. . . .  t . . . .  i . . . .  I . . . .  . are found to be in much better agreement with the 

0.50 ~ analytic solution as shown in the next figures (Figs 9 and 

/ \  10). For these figures the analytic solution is obtained by 
" [" - - ~ " ~ '  increasing the dimension of the initial solute prism to o II 

2-2 m x 0-75 m x 0-75 m. Very good initial matching was 
observed but the numerical solution again has a E 0.25 
tendency to get larger than the analytic solution with O 

" the passage of time (Fig. 10). This can be explained 
8 by the fact that the analytic solution assumes an 

infinite domain, while the numerical solution is for a 
0.00 finite domain. This results in solute being reflected by 

50 100 150 200 the domain boundaries and increasing the concentration 
in the numerical solution. At early times, the plume has Time (hours) 
not spread to an extent where it is affected by the 
boundary and therefore excellent agreement between the 

Fig. 9. Breakthrough curve at the sampling point with the 
two solutions was seen. Figure 10 is a very clear solute pulse centered within an element. 
demonstration of the effect of  the boundaries. Figures 
11 and 12 show the same type of  profiles but with a ten- 

initial concentration at those nodes is specified as unity fold reduction in the dispersivity values (and a 
while the nodes adjacent to them have zero concen- corresponding increase in the Peclet number).  Again, 
tration. And since a linear shape function is used, the the movement  of  the center of  mass is well duplicated, 
numerical scheme assumes a linear variation from one to but numerical dispersion is apparent  from the contours. 
zero in the elements adjacent to the pulse. Thus, we have The lower dispersivity reduces the boundary effect 
extra mass in the system, which manifests itself in higher because of less spreading and reasonable match near 
concentration values in the numerical simulation. 25 To the top and bot tom boundaries is observed. Along the 
test this hypothesis, later simulations were done with flow direction, however, a little numerical dispersion can 
finite element grid constructed in such a way as to put be noticed. 
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Fig. 10. Concentration contours along section l-1 at 200 h. 
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' ' ' ' ! ' ' ' ' I ' ' ' ' I ' ' ' ' reaction of solvents. The accuracy of this model is 
verified against analytic solutions and observed values 
for both saturated and unsaturated flow and transport 

0.75 problems. Some observations based upon various runs 
r- - -Numer ica l  with the authors' model are summarized below. (i) 

.o ! ~ Always use the automatic time-stepping and lumped 
0.50 scheme options. Based on experiences, large element 

sizes and small time steps will speed up the convergence 
o at each time step. This is due to the fact that the c- 
o 0.25 coefficient matrix becomes diagonally dominant and 

O radius of convergence is greatly expanded, t° However, 
the trade-off is that it will take a large number of time 

0.00 , • i ' , , , • ' • , , • I . ; r - r  steps to finish the simulation resulting in a possible 
50 100 150 200 increase in interpolation error during reverse particle 

Time (hours) tracking. (ii) A fully explicit scheme can be used in 
conjunction with the MMOC to save computer time and 

Fig. 11. Breakthrough curve at the sampling point for the low storage space without limiting the time step to a very 
dispersivlty case. small value. (iii) In most flow situations the application 

of Galerkin scheme to the flux equation results in quite 
accurate velocity field although assumption of linear 
variation of velocity is inconsistent with a linear head 

SUMMARY variation. Near the boundaries, however, this approach 
fails to simulate accurately the velocity components. 

A three-dimensional finite element model for the Currently, the model is being applied to simulate 
simulation of the transport of a chemically reactive migration of chloride and colloids in a large-scale field 
solute is developed by combining the recent develop- experiment and the preliminary results appear to be 
ments in the fields of numerical methods and chemical quite encouraging. 
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expressions is at the lower left corner  o f  the domain .  The The steady-state  solution is given by: 
actual variables are denoted with an asterisk to 
distinguish them f rom their dimensionless forms. K =  e - :  + q(b - a) (1 - e--') + 2q /4-:/2 
Exponent ia l  relations are assumed as follows: ~ -~-e 

~-~ {sin (A~b) - sin (A~a)} cos (A.x) sinh ( p . z )  

* =  K e '~  K*. = ~ - A ' - - ~ s i n ( a - ( - p - ~ - + - p n c o s h ( p n H ) }  K~ s.~ ; Ks:e ; 0 = 0  r + ( 0  s - 0 r ) e  ~ '  (A1) x 
? / : l  

where K,: is the hydraulic conduct ivi ty  in the/-direct ion.  (A6) 
Dimensionless  variables are defined as: 

where An = m r / L  and p .  = V/l~+A~. 
, vK~s_. The dimensionless Darcy  v" elocity componen t s  in the 

x = ax* so that  L = aL* ; x-  and z-directions are obta ined as: 

_K~x , ~ ~ - I ~ " OK (A7) 
a = aa* , b = ab  --s.- (A2) " KVFKsxKs ._ Ox 

and 
z = az* so that  H = a l l *  (A3) 

Ks.,. - Ks-_ (A4) V_ = --:--Ks: = - - -  + K (A8) 

q 
q = Ks-~_ (A5) 


