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Abstract.

Statistical moments of solute plumes from small sources in variably saturated,

heterogeneous porous media are analyzed by using a newly developed, efficient high-
resolution Monte Carlo technique. In agreement with previous theoretical work, it is
illustrated that the prediction of such solute plumes is associated with large uncertainties
for dimensionless travel times, t’, exceeding 40, particularly predictions of plumes in
highly heterogeneous soils ((ry2 > 2). Uncertainty about the travel path of the plume
center contributes significantly to overall concentration uncertainty as flux fields become
more variable. It is shown that the concentration coefficient of variation at the center of
the plume initially increases but stagnates or decreases at later times. For highly
heterogeneous soil flux conditions or for the common case of soils with strongly
anisotropic conditions, analytical models underestimate transverse spreading of the mean
concentration plume at any given time, while overestimating longitudinal spreading. At
identical mean plume displacement distances, analytical models underestimate both
transverse and longitudinal spreading and overestimate the variance of solute flux
(breakthrough curve) by up to a factor 4. As an alternative to the statistical analysis of
solute flux, we propose to analyze statistical properties of time associated with peak solute

flux and with first exceedance of a given solute flux level.

Introduction

Most groundwater pollution sources, whether they are
agricultural, domestic, or industrial, are generally at or near
the surface, and pollutants must travel through the unsat-
urated zone before reaching groundwater. Thus a thorough
understanding of transport processes in the unsaturated
zone is essential to assess the contamination risk of ground-
water resources and to predict travel time from a pollution
source to a drinking water well field. Stochastic models of
solute transport in variably saturated media that account for
uncertainty due to spatial variability have mostly been lim-
ited to the analysis of one-dimensional scenarios [e.g.,
Dagan and Bresler, 1979; Bresler and Dagan, 1981;
Amoozegar-Fard et al., 1982; Jury, 1982; Simmons, 1982; Jury
et al., 1986; Butters and Jury, 1989; Destouni and Cvetkovic,
1989, 1991]. These studies assume that soils consist of an
ensemble of independent, random, vertically homogeneous
stream tubes and that horizontal movement of solutes is
negligible.

Two-dimensional solute transport in heterogeneous soils un-
der unsaturated conditions has recently been studied numeri-
cally by Russo [1991] and by Russo and Dagan [1991] who
suggested that macrodispersion of unsaturated transport is
amenable to the same stochastic transport analysis as those
known for aquifer contamination. Russo [1993a] combined the
three-dimensional spectral analysis of unsaturated flow in het-
erogeneous media by Yeh et al. [1985a, b] with the Lagrangian
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transport analysis by Dagan [1988] to derive analytical expres-
sions for the displacement of the center of a plume and for the
average plume spreading. In a complementary study, Russo
[1993b] derived the mean solute breakthrough in a three-
dimensionally heterogeneous soil based on the work by
Cvetkovic et al. [1992]. These analyses are accurate only to
first order and thus restricted to mildly heterogeneous me-
dia with a normally distributed velocity. As demonstrated in
many field and theoretical studies [e.g., Yeh et al., 1985b, c,
1986; Yeh and Harvey, 1990], variability in unsaturated hy-
draulic properties can become large as soil desaturates, in-
dicating that variability of flux under relatively dry condi-
tions can be very strong. In addition, Harter [1994]
demonstrated that vertical Darcy flux distribution is skewed,
which contrasts with the Gaussian flux distribution assumed
in analytical studies. Clearly, the validity of analytical mac-
rodispersion models needs to be assessed.

The purpose of this paper is to implement high-resolution
Monte Carlo simulations (MCS) to improve our under-
standing of solute transport in highly heterogeneous systems
and to compare results with existing analytical models. We
focus on the behavior of solute plumes from point sources
and investigate solute concentration, solute flux, and solute
plume spreading as a function of the various independent
parameters characterizing a spatially variable soil. Concen-
tration moments and solute plume spreading are analyzed
and compared to a linear macrodispersion model similar to
that of Dagan [1988]. Solute flux and travel time in various
soils are investigated and compared to the Lagrangian par-
ticle travel time model by Cvetkovic et al. [1992].
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Implementation of Monte Carlo Simulation
Transport Model

Transient transport is simulated with an algorithm by Yeh et
al. [1993] based on the modified method of characteristics
(MMOC). Given a random realization v(x) of the velocity field
and a local dispersion tensor D(x), the governing equation for
concentration c¢(x, t) solved by MMOC is

ac(x, t)
Jdt

+v(x)Ve(x, 1) = V- [D(x)Ve(x, t)] (D)

Detailed methods for generating random realizations of
steady state, unsaturated velocity fields v(x) are given by Harter
[1994]. Input parameters are mean soil water tension H and
spatially correlated random realizations of f (logarithm of the
saturated hydraulic conductivity: f = In K|) and a (logarithm
of the pore size distribution parameter: @ = In «) with means
F and A, and variance o7 and o, respectively, and an expo-
nential spatial correlation function characterized by the hori-
zontal and vertical correlation scales A, and Ay,. The correla-
tion function for a is assumed identical to that of f.

In this study, D is set to 0, which allows for a numerically
efficient implementation of (1). Local or “pore-scale” disper-
sion is introduced implicitly through numerical dispersion,
which is caused by the bilinear interpolation scheme employed
in the advective step of the MMOC [Yeh et al., 1993]. Its actual
magnitude is determined as part of this study. Implicit (numer-
ical) or explicit (parametric) local dispersion is expected to
affect local concentration variance [Dagan, 1982] and the as-
ymptotic (i.e., late time) magnitude of lateral macrodispersion
[Gelhar and Axness, 1983; Neuman et al., 1987]. While numer-
ical dispersion is artificial, its net effect is consistent with many
field findings and with the stochastic transport theories of
Gelhar and Axness [1983], and Neuman et al. [1987], which
explicitly account for pore-scale dispersion.

Statistical Analysis of Monte Carlo Simulations

Spatial concentration distribution. In this analysis the lo-
cal concentration sample mean {(c(x, ¢)) and the local sample
variance o2(x, t) are evaluated at four dimensionless times,
t' = 5,10, 20, and 40 (at one site the output is compiled at
times ¢’ = 4, 8, 16, and 31), where t' = ¢ V2" A, with
V7Y™ being the actual vertical mean velocity determined from
MCS. The zero-order, first-order, and second-order spatial
moments of an actual concentration plume are given as

NN
My(t) = D c(x, 1)6(x) Ax‘Az!
i=1
NN
M(t) = 1/M, >, ¢(x, 1)6 (x) Ax'Azix’

i=1

M,(t) = 1/M, D, c(x, 1)6 (x) Ax'AzZ’ (2)
M(1) = | 1/My D, c(x!, 1)0(x)Ax'AZ(x)* | — (M(1))?
M_(t) = | 1/My Y, c(x', )0 (xX)Ax'AZ () | — (M,(1))>
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M(t) is total mass in the finite element domain, where the
finite element domain consists of NN nodes connecting rect-
angular elements of sidelengths Ax and Az. 6 (x) is the arith-
metic average of water content in the four elements surround-
ing node /. In this study, 6 is assumed constant throughout the
domain, consistent with existing analytical models against
which we will compare our results. The horizontal and vertical
positions, M (¢) and M_(t), are the center of mass of a plume
c(x, t), x € R% The terms M, (¢) and M,,(¢) are horizontal
and vertical moments of inertia, respectively. From realizations
of random, time-dependent moments (2), sample means and
sample variances are computed at 500 equally distant time
intervals distributed over the total simulation period.

The variance of M,(¢) is an indicator of the average numer-
ical mass balance error in MMOC. The expected values of the
first spatial moments, (M, (¢)) and (M_(¢)), are measures of
average plume displacement and coincide with the center of
mass of the mean plume concentration {(c(x)). The mean of the
second spatial moment (M ;(¢)) (I = x, z) is a representative
measure of the average spreading of the plume around its
centroid. Second spatial moments, (M,(¢)), are not identical
to second moments, X;;(¢), of the mean concentration plume
[cf. Dagan, 1990]. The first and second spatial moment X, and
X,; of the mean concentration plume {c(x, ¢)) are computed as
in (2), with c(x, t) replaced by {c(x, t)) and M replaced by X.
From statistical principles for turbulent mixing [Fischer et al.,
1979], illustrated by Kitanidis [1988] and Dagan [1990] for
porous media transport, it follows that X;, (M,;), and var (M)
are related through

Mi(0))y + var [M(D)] = X;(t)  i=x,z (3)
where var (M;) is the sample variance of the first spatial mo-
ment M,, that is, it is a measure of the uncertainty regarding
the actual center of a solute plume. Uncertainty about the
travel path of the plume center, var (M,), relative to the size of
(M ;) vanishes only if plumes are of large initial lateral spread-
ing or have traveled a sufficiently large distance. Then (M,;)
and X, become interchangeable (ergodic transport).

Solute flux characteristics. In applications to the unsatur-
ated zone, solute mass flux across a compliance boundary (usu-
ally the water table) is of significant practical interest. Neglect-
ing pore-scale dispersion, solute flux s(x, ¢), the mass of solute
per unit area and unit time passing through a surface element
of unit normal n is related to the resident concentration
c(x, 1):

4

Definition (4) yields a flux-averaged concentration, ¢, =
J (s m dA4)/f (6.,vn dA), equal to resident concentration.
Such a simplification is justified because advective mass flux
here is much larger than dispersive mass flux [Parker and Van
Genuchten, 1984].

Total mass flux S(¢) across a compliance surface (CS), here
a single line perpendicular to the mean flow direction, is

s(x, 1) =s(x, 1) m=c(x,1)0,v(x) " m

NC

S(1) = > s(x;, t)Ax;

n=1

(%)

NC is the number of finite element nodes along the horizontal
CS, and Ax; is the average element width to the left and right
of node I; in other words, concentration is linearly weighted
between nodes. Mean (S(¢)) and variance o2(¢) of S(¢) are
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computed from individual realizations of the integrated mass
breakthrough curves S(¢). For this study, four CS’s are defined
at dimensionless vertical distances Z' = Z/A,, = 5.4, 11.6,
17.8, and 23.8 from the solute source area.

In addition to the stochastic analysis of total mass break-
through S(¢), a stochastic analysis of solute mass flux arrival
time ¢,(x, s), and solute peak flux time #,(x) is undertaken.
Solute mass flux arrival 7, (x, s) is the time at which solute mass
flux first exceeds a compliance mass flux s at location x on the
CS. Mean, (t,(x, s)), and variance, var ¢,(x, s), are computed
at 19 discrete levels s distributed logarithmically between
1077 X s/sy and 107 X s/s,,. Peak flux time #,(x) is equal
to time of highest concentration or peak solute flux at x. Sta-
tistical moments of arrival and peak time are investigated at
one horizontal compliance surface near the center of the sim-
ulation domain (Z’' = 11.6). Results are normalized with
respect to spatially invariable water content § and mean verti-
cal velocity V', .-

Model Soil Sites

Numerical simulations are implemented for soil cross sec-
tions that are 12.8 m deep and between 7.6 and 30 m wide,
depending on the expected horizontal solute spreading. Our
model simulates instantaneous injection of a small source sol-
ute slug into soils by specifying an initial concentration ¢, = 1
for a rectangle of three nodes horizontally by two nodes ver-
tically (concentration is specified as a nodal property in
MMOC). Total applied mass depends on grid discretization.
Reported sample moments are normalized with respect to
total mass or initial concentration. They depend only on the
ratio between initial plume size and correlation scale of the
saturated hydraulic conductivity.

Hypothetical soil types are investigated that are representa-
tive of a wide variety of typical field soils. All soils have a
hypothetical vertical correlation length A, = 0.5 m. The
horizontal correlation length A, varies from 0.5 to 3.0 m.
Vertical discretization of the finite element domain is 0.1 m.
Horizontal discretization is 0.1 m for A, = 0.5 m, 0.15 m for
Ap = 1.5 m, and 0.3 m for A, = 3.0 m. Thus the size of the
initial solute slug is 0.4 A, by 0.6 A, for isotropic soils, and
0.4 Ay, by 0.3 A, for anisotropic soils. Total size of the finite
element domain is 128 elements vertically and between 76 and
100 elements horizontally. Horizontal domain size was chosen
such that solute plumes would not be affected by the vertical
boundaries of the finite element domain. The variance of f
varies from 0.01 to 3.6, and the variance of a from 0.0001 to
0.04. The correlation p,,, between f and a is either 1 or 0. The
geometric mean of a (=I') is always 1.0 m~'. The average
water tension H varies from —1.5 to —30 m. A parameter
summary of the different hypothetical soils is given in Table 1
together with the actual size and discretization of the respec-
tive flow and transport models. For easier reference, soils are
grouped into four different categories that address the sensi-
tivity of stochastic transport to specific parameters:

1. Isotropic, wet soil; soils 2, 8, 3, and 9. Only the variances
of f and a change. The resulting average sample variance ayz of
the logarithm of the unsaturated hydraulic conductivity y =
log K is 0.01, 0.12, 0.85, and 3.4. Mean pressure head for “wet”
soils is —1.50 m.

2. Anisotropic, wet soil; soils 12, 29, 28, 22. Again, only the
variance of f and a change. For soils 29, 28, and 22 the result-
ing variance of y is 0.74, 1.8, and 3.2; soils 12 and 29 have
identical variances in f and a, but unlike all other examples,
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Table 1. Input Parameters for the Various Hypothetical
Soil Sites Used in the Unconditional Transport Analysis

Soil
Site o7 o? p r H Ax Apye Cut
3 0.95 0.01 0 1.0 -1.5 0.1 0.5 5
2 0.01 1074 2
4 cee cee 1 5
9 3.6 0.04 10
12 1 0.3 3.0 5
15 —10.0 0.3 3.0 5
21 e e 1 o =30.0 0.3 3.0 10
22 3.6 0.04 e e e 0.3 3.0 10
28 2.2 0.04 e e e 0.3 3.0 5
31 0.15 1.5 5

Here o7, variance of f = log K, (log: natural logarithm); o7, vari-
ance of a = log «; p,, correlation coefficient between f and a; T,
geometric mean of a [m~']; H, mean soil water tension [m]; Ax,
horizontal discretization of finite elements [m]; A; horizontal corre-
lation length of f[m]. For information regarding cut; see text.

soil 12 has perfectly correlated f and a random fields, which
reduces the unsaturated hydraulic conductivity variance to
0.53.

3. Constant variance 0'/2- = 1, wet soil; soils 3, 31, 29. Only
the horizontal correlation scale of f (and a) change: For the
three soils they are 0.5, 1.5, and 3.0 m, which results in aspect
ratios v = Ag/A,, = 1, 3, and 6, respectively. The three soils
have similar o;: 0.85, 0.79, and 0.74.

4. Anisotropic dry soil; soils 15 and 21. These are both dry
soils with mean soil water tensions H of —10.0 and —30.0 m,
respectively. Apart from differences in pressure head, soil 15 is
identical to soil 29, and soil 21 is identical to 12. The two dry
soils are compared with two strongly heterogeneous wet soils
of similar unsaturated hydraulic conductivity variance: 15 is
compared with 28 (o; = 1.5 and 1.8, respectively), 21 is
compared with 22 (o5 = 3.2 for both).

In the remainder of the paper, soil sites are referred to by
their category name and the value of 0. Harter [1994] showed
that o is the most important indicator for the heterogeneity of
the velocity field and is expected to play a similar role for
describing heterogeneity of solute concentration and flux.

To avoid errors due to first-order random head boundary,
the transport equation is solved in a different finite element
grid than the flow simulation. Steady state flux is obtained for
a finite element domain that is 5 to 10 elements larger around
each side than the finite element domain for the transport
simulation. In other words, boundaries of the transport model
are located in the interior of the flow model. The size of the
peripheral “cutoff” within the flow model is determined from
the MCS of unsaturated flow [Harter, 1994] and is indicated in
the right column of Table 1.

Monte Carlo simulations are based on 300 realizations of
each soil site. The accuracy of the sample mean concentrations
calculated from 300 realizations and the rate of convergence in
the MCS was investigated by Harter [1994]. Mean concentra-
tions at different travel times computed from 100, 300, and
1000 realizations were compared, and it was found that mean
concentrations based on 1000 realizations do not significantly
differ from those based on 300 realizations. Experiments with
300 realizations gave significantly smoother mean concentra-
tion contours than contour maps based on 100 realizations,
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Figure 1. Examples of solute transport in three different soils with increasing variability in unsaturated
hydraulic conductivity: Soil sites 29 (left column of four panels), 15 (center column), and 22 (right column).
(Figures la—1c) Streamlines of individual realizations. (Figures 1d-1f) Respective solute concentration dis-
tributions at ¢* = 10. (Figures 1g-1i) Mean concentration distribution from 300 realizations. (Figures 1j—1/)
Vertical profiles of concentration mean (solid line, left y axis scale) and variance (dashed line, right y axis
scale) along the mean travel path at different dimensionless times ¢'. All horizontal and vertical distances are

in centimeters.

particularly for highly variable soils. Hence 300 realizations are
considered adequate for our analysis. Typically, CPU time per
realization (including random field generation, flow, and trans-
port computation) range from 5 to 15 min on an IBM RS6000/
560 [see Tripathi and Yeh, 1993], depending primarily on o;.

Results and Discussion
General Characteristics of Solute Movement

Effects of heterogeneity on the variability in velocity and on
the spatial distribution of solute concentration in unsaturated
porous media are illustrated in Figure 1 for three anisotropic
soils (v = 6) with distinctly different 0. In mildly heteroge-
neous soils, streamlines are approximately vertical (Figure 1a).
As soils are more heterogeneous or as a soil dries out, stream-
lines tend to be clustered in preferential flow areas showing
large variability over short distances. Deviations from a paral-
lel vertical flow pattern become larger as the variability of y
increases (Figures 1b and 1c), and streamlines exhibit signifi-
cant lateral flow paths (Figure 1c). Relative to its entry posi-
tion, the maximum observed total horizontal displacement of a

streamline at the bottom of the 12-m-deep vertical section is 1
to 2 m for o; = 0.74, on the order of 5 m for o = 1.48, and
on the order of 10 m for (ryz = 3.20. This qualitative result is
consistent with the moisture-dependent anisotropy concept de-
veloped by Yeh et al. [1985b, c], which suggests significant
lateral migration of water as soils dry out. While single real-
izations of streamlines as depicted in Figure 1 bear little sta-
tistical significance, they clearly illustrate why parallel stream
tube models are limited in their applications when one models
unsaturated solute transport from small sources.

Figures 1d-1f show actual solute concentration at ¢’ = 10,
which are affected by travel path variability, local dispersion,
and travel velocity variability. With increasing variance of y,
solute plumes assume increasingly erratic shapes; at identical
dimensionless travel time ¢’, travel distances of the plume
center of mass become more variable and differ significantly
from mean displacement, and the degree of lateral migration
of individual solute plumes increases.

Corresponding MCS sample mean concentrations (Figures
1g-1i) exhibit more spreading and hence lower peak concen-
trations than observed for the actual plumes, owing to the



variability var (M;) (I = x, z) in the travel path of the plume
center as the flux heterogeneity increases. In moderately to
strongly heterogeneous flux the mean concentration along the
vertical axis is significantly skewed (Figures 1k and 1/). Asym-
metry in the mean concentration profile increases with o It is
believed to be caused by the non-Gaussian velocity distribution
and by significant correlation between transverse and longitu-
dinal velocity components when the velocity is large [Harter,
1994]. A standard particle-tracking analysis in the velocity
fields generated by simulation of soil site #3 confirmed that the
skewed mean concentration distribution is not an artifact of
the MMOC transport model. Only for mildly heterogeneous
media, MCS simulations produce a Gaussian mean concentra-
tion distribution at all ', 5 = ¢’ = 40, (Figure 1g).

Sample concentration variance along the mean flow direc-
tion is significantly more skewed than the concentration mean
(Figures 1j-11). At 300 realizations it is very sensitive to out-
liers, particularly in highly heterogeneous soils (Figure 17).
Generally, the largest variances along the vertical mean flow
path occur near the inflection points of the mean concentra-
tion profile if the soil is only moderately homogeneous (o) <
0.5). In those soils the concentration variance at the plume
center has a local minimum. This observation is consistent with
theoretical findings [e.g., Graham and McLaughlin, 1989; Neu-
man, 1993]. As the flux heterogeneity increases, the concen-
tration variance upstream of the maximum mean concentra-
tion becomes relatively larger than that downstream of the
maximum mean concentration resulting in a single peak profile
(Figure 1j). For very heterogeneous systems the double peak is
entirely obscured due to the asymmetry of the concentration
variance profile (Figure 1/). In single-peaked concentration
variance profiles the maximum concentration variance occurs
near the upstream inflection point of the mean concentration
profile.

Concentration variance is a relatively poor measure of un-
certainty since concentration is nonstationary. Another mea-
sure of uncertainty is concentration coefficient of variation
CV.(x, t)

0.

Vo= 15 (6)

Cv, (a) Cv,

2.0 (b)
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15l , (67 =32
. =34 [ Fis
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/./'—.
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y 2
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0.5/¢——e———® La)
\‘\A_i=_9_:91’A GY = 0'53; Pra = 1
0.0% : : : : ‘ ‘ !
5 10 ¢15 20 5 10 t 15 20

where ( ) refers to sample averages and the evaluation is at x
and ¢. Unlike concentration variance, CV, always has a global
minimum near the location of the peak mean concentration
and increases with distance from the plume center [e.g., Dagan,
1984; Rubin, 1991; Kapoor and Gelhar, 1994]. In terms of CV/,
uncertainty about high concentrations in the center of the
plume is lowest while uncertainty about the very low mean
concentrations at the edges of the plume is highest. In the
MCS’s, the minimum CV, is located at or below the location of
mean concentration with distances between the two locations
increasing as o increases (Table 2).

The minimum CV_ near the center of the mean plume
increases with o (Figures 2a and 2b). At¢’ = 5 the minimum
CV,. decreases with time or remains almost constant in wet,
isotropic soils (Figure 2a) but first increases and later remains
constant or decreases in wet, anisotropic soils (Figure 2b). The
minimum CV, at ¢’ = 5 is higher in isotropic soils than in
anisotropic soils. At later times (¢’ = 10, 20) the observed
difference in CV, for different aspect ratios decreases, and in
some instances anisotropic soils will have a higher CV, than
isotropic soils of comparable textural variability. For soils of
comparable o, but different mean head (dry versus wet),
temporal dynamics and magnitude of minimum CV_ are very
similar. These numerical results qualitatively support the the-
oretical work by Kapoor and Gelhar [1994], who postulate that
the CV,. does not increase infinitely as time becomes large.
However, it should be pointed out that for most cases, the
minimum CV is always greater than 0.5 within the time inter-
val observed here. In many practical cases, unconditional mean
concentration predictions are therefore associated with large
uncertainties [Yeh, 1992].

Comparisons With Approximate Analytical Solutions

Spatial moments. In linear theories of macrodispersion
[Gelhar and Axness, 1983; Dagan, 1984, 1988; Neuman et al.,
1987], the second spatial moment (moment of inertia) of the
mean concentration plume is estimated analytically based on
the fundamental result of turbulent diffusion [Taylor, 1921]



