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Abstract-Exact solutions are presented for Burgers’ equation in a fmite layer connected to an 

underlying semi-infinite medium of different conductivity and diffusivity. A constant-flux boundary 

condition is assumed at the surface. This has direct application to steady rainfall on layered field 

soils. At large times, a travelling wave profile develops in the deep layer and the concentration in the 

upper layer approaches a non-trivial steady state. Water flux and potential energy are continuous 

across the interface but the concentration gradient may show a marked discontinuity. 

1. INTRODUCTION 

Burgers’ equation 
vt = Dv,, + ~Evv,, D, E constant (1.1) 

is a well-known classic example of an integrable nonlinear evolution equation. Because of its many 

and varied applications [l-3], many exact solutions have been constructed. Those closed-form 
solutions that were known up to 1971 were tabulated by Benton and Platzman [4]. 

The application that we consider here is that of vertical water flow in unsaturated soils. In 
a homogeneous unsaturated soil, the one-dimensional Richards equation for volumetric water 
content 19 is 

Bt = 8, [D(d) B,] - K’(8) 01 (1.2) 

(see, for example, [5]). The B g ur ers’ equation is a particular case with D constant and K(e) 
quadratic. Unlike the solutions on the whole line tabulated by Benton and Platzman [4], in 
the present context, solutions are applicable only on the half-line z > 0, representing the soil 
subsurface. Boundary conditions at t = 0 are directly relevant. The solution with constant flux 
boundary condition, derived by Clothier et al. [6], represents infiltration during steady rainfall. 
The solution with linearly increasing flux at .z = 0, was used by Broadbridge and White [7] 
to investigate the onset of ponding under an increasing rainfall rate. Realizing the practical 
importance of the semi-infinite or finite domain, Calogero and de Lillo [8] developed a systematic 
approach to solving Burgers’ equation with time-dependent boundary conditions. 

The Richards equation (1.2) is often considered as a starting point of unsaturated flow theory. 
In reality, soils are heterogeneous and they often exhibit distinct layers. As pointed out recently 
by Smith [9], there are few known exact solutions to transient flow in layered media and most of 
these use a simple piston flow approximation, in which the water content profile is approximated 
by a step function. Srivastava and Yeh [lo] obtained some solutions for the linear model (D 
and K’(0) both piecewise constant) in two finite layers. Here, we consider a very deep lower 
layer. It is observed that for a range of boundary conditions, including constant flux or constant 
concentration boundary conditions, a travelling wave develops at large times. It is the concavity 
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of K(0) that ensures the stability of this travelling wave solution [11,12]. For this reason, we 
replace the linear model by the Burgers equation but with the parameters D and E of (1.1) 
different in the two layers. With some extra restrictions on the soil hydraulic parameters, we are 
able to obtain exact solutions. These exhibit the development of the travelling wave solution in 
the lower layer, with the adjoining upper layer tending to a non-trivial steady state. 

2. BURGERS’ EQUATION ADAPTED TO LAYERED SOILS 

The applicability of Burgers’ equation to a homogeneous soil has been discussed by Cloth- 
ier et al. [S]. Here we adopt a similar notation, except that indices (i) refer to the ith layer, 
with i = 1 representing the upper layer and i = 2 the lower layer. In layer i, we normalize the 
volumetric water content 

(2.1) 

Bii) is the water content at saturation and 0:) 1s some low initial background level. The soil 
water diffusivity is assumed to be 

D zz DC”), constant in each layer (2.2) 

and the hydraulic conductivity is assumed to be 

I{ = I{‘(‘) 02. .9 (I)’ (2.3) 

where I%$‘) 1s the saturated conductivity in layer i. 
In our consideration of boundary conditions at the interface between layers, an important 

quantity to be considered is the soil-wat,er interaction potential 4. This is the potential energy 
per unit weight of water, due to soil-water interaction, and it must be continuous (e.g., [9]). I(, D 

and q are related (e.g., [5]) through 

D,Jid‘y 
de ’ 

rk(8,) = 0. 

From (2.1)-(2.3), this yields 

DC”) 
*(iI = 

&) - @] [l _ @,;] . 
, .j (2.4) I{!‘1 1 

We shall use length and time scales intrinsic to layer 1. 
where 

1 J1_“, K(‘) d9 
---= 
94 I(!‘) 

The sorptive length scale [13] is l/cr(l) 

(2.5) f$i) _ et) D(i) 

= 1 

The gravity time scale, differing from that of Philip [5] only by a factor of 7r/4, is 

1 
t, = ___ where 

I(!‘) 

o(l?%) ’ 
u(i) = eLi) _ ec) ’ w-9 

UC;) may be interpreted as the speed of the large-time travelling wave profile in a single layer of 
type i, saturated at the surface [ll]. 

In terms of dimensionless variables 2 = ayz, T = t/t, and 0, the governing equation (1.2) 
becomes 

(2.7a) 

(2.7b) 

where 2, = d2)/d1) and ,!,i = Lr(2)/fJ(1) 
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Here, we assume the initial condition 

O(i) = 0 W-9 

and the constant flux boundary condition, representing a steady rainfall rate R of dimensions 
LT-l: 

ao,,) R 
%r 82 =%? = KS’) at Z = 0. (2.9) 

At the two-layer interface Z = L, there must be continuity of potential Q of (2.4), 

(2.10) 

and continuity of water flux, 

(2.11) 

We are required to solve the boundary value problem (2.7)-(2.11). 

3. EXACT SOLUTION OF THE NONLINEAR BOUNDARY VALUE PROBLEM 

In each layer, we now apply the Cole-Hopf transformation [14,15]: 

uy 
O(l) = ---Jqf 

uy 2, 
O(2) = -u(2) U’ 

Then, (2.7) is equivalent to 

[ 
us) - u(l)&] [r$’ - u(,1k] = o and 

[ 
u$’ _ ,&_ 

8Z I[ uy - Dug?] = 0. 
Therefore, it is sufficient that u(l) and ~(~1 obey the linear diffusion equations 

(1) - (1) 
UT - uzz and 

ug’ = v$i. 

Continuity of potential (2.10) implies 

“(2) zliy_ uz (l) zlirn+ u$!’ +921 zl$ u z-L+ z 
(l) lim u(‘) 

= cry zlirn_ u$’ ilrn+ up + 
u . 

a(1) 2, Z-L- 
hm u$’ zlitn+ uc2) 

+ 

Continuity of flux (2.11) implies 

(3.la) 

(3.lb) 

(3.2a) 

(3.2b) 

(3.3a) 

(3.3b) 

(3.4) 

#) 

.‘1F- u(l) 
2, d2) 

’ T= lim -2, 
z-L+ u u(2) (3.5) 
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Now, we notice that the factor V/U in (3.4) 
special case that ‘~(~1 = ‘~(~1, 

and (3.5) is identical to o(i)/o(z). Therefore, in the 
the boundary conditions (3.4) and (3.5) are both guaranteed by 

requiring continuity of both u and uz across the interface: 

.liy u(l) = lim u@), 
+- z-L+ 

zlirn_ u$’ = lim u$!‘. 
z+L+ 

(3.6a) 

(3.6b) 

As in the case of the linear model [lo], we cannot yet solve the layered medium problem except 

when ‘~(~1 = o(2). If the water content range is uniform (0;‘) - t&l) = 8i2) - 0i2’), ‘Y(~) = ‘~(~1 
only if diffusivity D and saturated conductivity K, vary across the interface by the same ratio. 
This is unlikely to happen in practice but at least an increase in I(, is correlated with an increase 
in D, as to be expected. 

The constant-flux boundary condition (2.9) reduces to 

(1) = RRuO) 
UT at 2 = 0. 

Since ~(~1 is defined freely up to a scaling gauge transformation, we take 

Jl) = ,RT ! z = 0. 

The initial condition O(i) = 0 implies 

a(‘) = constant at T = 0. 

To ensure compatibility with (3.6) and (3.7), we take 

(3.7) 

u(i) = 1, T= 0. (33) 

The simplified linear boundary value problem that we now need to solve is 

au(l) a&(l) 
-=my O<Z<L 

a&) = = SW) 

dT a22 ’ 
Z>L 

,Ji) = ,aT z=o 

zhrn+ uc2)( Z, T) = lim u(l)( Z, T) 
Z-L- 

zlirn+ ug’(Z, T) = zliy_ u$‘(.Z, T) 

I#)( Z, T) = &Z,T) = 1, T=O 

d2)(Z,T) + 1, 2 + 00. 

After taking the Laplace transform u(‘)(Z, T) -+ ii(‘)(Z,P), (3.3) implies 

&) = 1+ Ae-Pjz + &z, 
P 

OsZ<L and 

(3.3a) 

(3.3b) 

(3.7) 

(3.6a) 

(3.6b) 

(3.8) 

(3.9) 

(3.10a) 

d2) = A + cc-z@ + EeZ&F, z 2 L. 
P 

Boundary condition (3.9) immediately yields E = 0. The remaining boundary conditions 

(3.6a), (3.6b) and (3.7) t ransform to a system of three algebraic equations for A, B and C: 

Ae-L6’+ L-A_ 
[ P-R P 

A 

1 
eL@ = Ce-Lm, 

-Ae-L@ + --!-- _ ! _ A 

P-R P 1 
eL& = -1 Ce-Lm, 

a 

(3.11) 

(3.12) 

B=~_~_A, 
P-R p 

(3.13) 
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We write the unique solution in a series form that will allow inversion of the Laplace transform 

from standard tables: 

(3.14) 

(3.15) 

(3.16) 

Inverting (3.10), we obtain 

u(l) = 1+ f eRT 
{ 

emz6erfc 
[ 
--& - JRT] + eZfierfc [ --& + \/aTj } - erfc (--&) 

+ 2(-l)” 
n=l 

(f&-i)" {i eRT [~sfi12nz+zIeaf~ (2n2LJ&z -m) 

+ ,fi12nLtZlerfc 
( 

2nL + z + JR-T 
2@ ) 

_ c-fiPnZ-Zlerfc 
( 

2n2L>Z - a) 

_ c~12nz-zlerfc 
( 

2nL - ’ + m 
2e I + erfc 2nL - ’ - erfc 

2nL+Z 

2JT 1 2JT ’ 
(3.17a) 

{cszlRerfc [-&-a] +eZXzerfc [-&+m]} -erfc (&) 

+ 2(-l)” 
n=O 

(g;;)” {,,,T [,-~12~~+i~~t~.l,r (2[n+;&+Z1 _a) 

+ ,~2(ntl)ztzIlerfc 

( 

2b+ 1w+ zl + m 

2JT; > 

_ e-~[2nztZ,lerfC 

( 

2nL+Zl _ &+ 

2J?; > 

_ ,~[2nztZ,lerfc 2nL+Zl +m 

( 2JT )I 
+ erfc 

2nL + Z1 
erfc 

2(n + 1)L + ZI 

2JT - > 2J?; ’ 

where 

zi = (z-L) 
7- 

L. (3.17b) 

Hence, via (3.1), we have a closed-form solution to the nonlinear boundary value problem (2.7)- 

(2.11) for unsaturated flow in layered media. Although we have concentrated on the constant-flux 
boundary condition at Z = 0, we expect that our method may also be applied to other boundary 
conditions, such as prescribed concentration or prescribed time-dependent flux. 

4. DISCUSSION OF RESULTS 

The analytic solution contains much interesting structure, which we now illustrate. In Figure 1, 
we display the developing concentration profile for a dimensionless rainfall rate a = 1, when the 
upper layer 1, of dimensionless depth L = 2, has half the conductivity of layer 2 (2) = 2). 
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water content 

Figure 1. Analytic solution for Burgers’ equation in a resistive layer overlaying a 

more conductive medium. Surface flux is 72 = 1.0, layer interface is at depth L = 2.0 

and ratio of diffusivity (and of conductivity) in layer 2 to that in layer 1 is V = 2.0. 

Output times are given by dimensionless cumulative infiltration RT = 1.0, 3.0, 7.0 

and 9.0. 

The normalized water content 0 is continuous at the interface 2 = L. However, this may 

represent a discontinuous volumetric water content 0 if the parameters et) and 85’) vary from 
the top to the bottom layer. 

In order to maintain a continuous water flux across the interface, the gradient $$ must be 

discontinuous. Noting that ‘D = U here, equation (2.11), for continuity of water flux, implies that 
at Z = L. 

02 _ W2) d@(l) ?2) - (I_ q 

az az (- az)’ (4.1) 

where 0 is the common value of O(i) and 0~). The factor O2 - %$ in (4.1) is the dimensionless 

water flux which is everywhere positive. In the case 2) > 1, s < 0, and (4.1) implies that at 
z = L, 

~C!g~>p.g. (4.2) 

In this case, water content profiles are steeper in layer 1 than in layer 2. 
At the later times T = 7.0 and T = 9.0 depicted in Figure 1, the familiar travelling wave solution 

to Burgers’ equation is already evident in layer 2. At these two times, there is no discernible 
change to the water content profile in layer 1. The latter must be very close to its steady state 
and the flux must be almost uniform throughout layer 1. At Z = L, the dimensionless flux must 
be close to R, the value at Z = 0. As time progresses, water content gradients at the top of 
layer 2 approach zero. As T + 00, at Z = L+ , 

and - 92) ~ 0 

dZ ’ 
(4.3) 

In the case of Figure 1, 0~) approaches &/2. Due to the presence of layer 2, the steady state 

in layer 1 is not trivial. If layer 1 were infinite in extent, 0~~) would approach fi pointwise 
as T + co. However, as shown in Figure 1, when layer 2 is present, there is a persistent water 
content gradient in layer 1, with a corresponding persistent diffusive component to the flux, so 
that the limiting value of 0~~) is everywhere less than fi (= 1 in the case of Figure 1). 

In Figure 2, we illustrate the evolving profile when ‘R = 0.25 and the upper layer has four 
times the conductivity of the lower layer (ZJ = 0.25). 



Burgers’ equation 

water content 

169 

BY (4.31, 0~2) approaches 1, as seen in the profiles with RT = 7.0 and RT = 9.0 when the 

travelling wave profile is evident in layer 2. By (4.1), s > q. At the early time T = 1.0, 

w and 3 are both negative, with a steeper gradient in layer 2, 

0j,0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.0 

IE. - 

Figure 2. Analytic solution for Burgers’ equation in a conductive layer overlaying a 

more resistive medium. R = 0.25, L = 2.0, and V = 0.25. Output times are given 

by the same values of RT as in Figure 1. 

However, at later times, due to the higher resistance to flow in layer 2, water builds up at 

the interface and q is positive while 9 is negative. The sharp change in character of the 
concentration profile at a layer interface,akd the development of a travelling wave profile at 
depth, have now both been captured in an analytic solution. 
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