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Abstract. An iterative geostatistical inverse approach is developed to estimate
conditional effective unsaturated hydraulic conductivity parameters, soil-water pressure
head, and degree of saturation in heterogeneous vadose zones. This approach is similar to
the classical cokriging technique, and it uses a linear estimator that depends on
covariances and cross covariances of unsaturated hydraulic parameters, soil-water pressure
head, and degree of saturation. The linear estimator is, however, improved successively by
solving the governing flow equation and by updating the residual covariance and cross-
covariance functions in an iterative manner. As a result, the nonlinear relationship
between unsaturated hydraulic conductivity parameters and head is incorporated in the
estimation and the estimated fields are approximate conditional means. The ability of the
iterative approach is demonstrated through some numerical examples.

Introduction

Predicting water and solute movements in the vadose zone
at a reasonable degree of resolution requires a large number of
measurements of the unsaturated hydraulic conductivity and
other hydraulic properties. Hydraulic conductivity of unsatur-
ated porous media is a nonlinear function of soil-water pres-
sure head or moisture content. Because of the dependence of
hydraulic conductivity on soil-water pressure and moisture
content, measurements of the unsaturated hydraulic conduc-
tivity are difficult, time-consuming, and costly tasks. Subse-
quently, characterization of the vadose zone using direct mea-
surements of the hydraulic conductivity at a large number of
locations in the vadose zone has rarely been conducted. On the
other hand, information about soil-water pressure head and
water content can be collected with relative ease in most
shallow and unconsolidated vadose zones, using tensiometers,
neutron probes, time domain reflectrometers, and electrical
resistivity tomography. Poorly sorted alluvial deposits, con-
glomerates, and solid rock masses comprising the vadose zone
in the western region of United States often prohibit the use of
pressure measurement devices. In this case, water content may
be the only information that can be collected in large quanti-
ties. For these reasons, taking advantage of the abundance of
the information about both soil-water pressure and water con-
tent to improve our estimates of unsaturated hydraulic prop-
erties in the field seems logical. This parameter estimation task
thus becomes the so-called inverse problem.
Inverse problems have been a major focus of groundwater

hydrology during the past few decades. Many mathematical
models have been developed to estimate transmissivity of aqui-
fers with given scattered hydraulic head f and transmissivity
measurements (see Yeh [1986] for a detailed review). One
popular method is the minimum-output-error based approach
(e.g., Yeh and Tauxe, 1971; Gavalas et al., 1976; Willis and Yeh,
1987; Cooley, 1982; Carrera and Neuman, 1986a, b]. Applica-
tion of this methodology to variably saturated flow in the va-

dose zone is, however, limited because of the complex nonlin-
ear nature of the governing flow equation (the Richards
equation). Kool and Parker [1988] and Russo et al. [1991] ap-
plied this minimum-output-error based approach to one-
dimensional unsaturated flow situations, with the goal of esti-
mating parameter values for unsaturated porous media in the
laboratory soil column.
While the minimum-output-error based approach faces

many inherent numerical difficulties, the geostatistical inverse
technique (cokriging) has received increasing attention in re-
cent years. It relies on classical linear predictor theory that
takes advantage of spatial correlation structures of pressure
head and conductivity and cross correlations between the head
and conductivity of porous media. This approach has been
widely used to estimate transmissivity, head, velocity, and con-
centration of pollutants in highly heterogeneous aquifers
[Kitanidis and Vomvoris, 1983; Hoeksema and Kitanidis, 1984,
1989; Rubin and Dagan, 1987; Gutjahr and Wilson, 1989; Har-
vey and Gorelick, 1995; Yeh et al., 1995, 1996]. In the vadose
zone it has been applied to estimate water content distribution,
based on some measurements of water content, soil-water
pressure head, soil surface temperature, and soil texture [e.g.,
Vauclin et al., 1983; Yates and Warrick, 1987; Mulla, 1988].
However, little attention has been directed toward the appli-
cation of this method to the inverse problem in the vadose
zone (i.e., estimation of unsaturated hydraulic conductivity
parameters, using soil-water pressure head and water content
data).
Recently, Harter and Yeh [1996b] showed, using cokriging

and a numerical model, that a large amount of soil-water
pressure head measurements can greatly improve the predic-
tion of movement of solutes in the vadose zone. Yeh and Zhang
[1996] developed a geostatistical inverse (or cokriging) tech-
nique for identifying unsaturated hydraulic parameters in het-
erogeneous vadose zones under steady state nonuniform flow
conditions. They found that unsaturated hydraulic parameters
of heterogeneous vadose zones can be reasonably identified if
a large amount of information on the soil-water pressure and
degrees of saturation are used. Their study also revealed that
the cross correlation between flow process and hydraulic pa-
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rameters varies with the mean soil-water pressure. As a result,
information on soil-water pressure under wet conditions im-
proves the estimate of saturated hydraulic conductivity. On the
other hand, information about degree of saturation enhances
the estimate of the pore-size distribution parameter in the
Gardner-Russo model [Russo, 1988].
While results of cokriging appear interesting and promising,

limitations of cokriging exist. In this study the limitations are
discussed and an iterative geostatistical approach attempting
to alleviate these limitations is presented. Using several nu-
merical examples, advantages of the iterative approach over
cokriging are illustrated. We hope our preliminary attempt will
stimulate more research on this challenging problem of iden-
tification of unsaturated hydraulic parameters in the heteroge-
neous vadose zone.

Statements of Problems
Steady state flow in two-dimensional heterogeneous porous

media under variably saturated conditions can generally be
described by the Richards equation:



 xi
FK~c!

~c 1 x2!
 xi

G 5 0 i 5 1, 2 (1)

with specified boundary conditions on G1:

c 5 c0
(2)

qi z ni 5 q0

where x1 and x2 are horizontal and vertical coordinates (pos-
itive upward), respectively. In (1), c is the soil-water pressure
head and is positive for saturated flow and negative for unsat-
urated flow; c0 is the prescribed head on boundary G1, and q0
is the prescribed flux normal to boundary G2; K(c) is the
unsaturated hydraulic conductivity (assumed locally isotropic),
which varies with c under unsaturated conditions. The Gard-
ner-Russo model [Russo, 1988] is used in this study to describe
the relationship between K and c. That is,

K~c , x! 5 Ks~x! exp @a~x!c~x!# (3)

where x is the position vector, { x1, x2}, Ks is the saturated
hydraulic conductivity, and a is a pore-size distribution param-
eter. The relationship between water content and soil-water
pressure head is described by the following function:

Q 5
u 2 u r
u s 2 u r

5 e20.5aucu~1 1 0.5a uc u!2/m12 (4)

where Q is degree of saturation or effective saturation; u is the
moisture content; us and ur are saturated and residual mois-
ture contents, respectively. The parameter m is a soil param-
eter that accounts for the tortuosity of the flow path and the
correlation between pores. For simplicity, m is set to zero in
our study.
In general, solutions to inverse problems of flow through

porous media are nonunique. It is a well-known fact that
uniquely identifying the spatial distribution of transmissivity in
an aquifer under steady state flow conditions is impossible
unless all hydraulic heads are known and boundary fluxes are
specified. For cases with given scattered hydraulic head f and
conductivity or transmissivity measurements, a logical inverse
approach should rely on the conditional stochastic concept
[Yeh et al., 1996]. This is also true for any attempts to identify

hydraulic parameters in the vadose zone. In other words, one
should attempt to obtain estimates of hydraulic parameters
(such as the natural log of saturated hydraulic conductivity (ln
Ks), the natural log of pore-size distribution coefficient (ln a),
soil-water pressure head (c), and effective saturation (Q)) that
not only preserve their observed values at all sample locations
but also satisfy their underlying statistical properties (i.e.,
mean and covariance). Furthermore, the estimated ln Ks, ln a,
c, andQ fields must satisfy the governing flow equation (1), the
associated boundary conditions, and the constitutive relation-
ships (3) and (4). In the conditional probability concept, such
fields are conditional realizations of the ensemble and many
possible realizations of such conditional fields exist. To avoid
such a nonuniqueness problem, the goal of this study aims at
deriving the expected values of all possible conditional realiza-
tions instead of each individual conditional realization.
Consider the case that ln Ks and ln a of a heterogeneous

porous medium are stationary stochastic processes, with con-
stant means, ^ln Ks& 5 F and ^ln a& 5 A , and perturbations,
f( x) and a( x). The angle bracket, ^ &, denotes the ensemble
expectation. Similarly, the corresponding soil-water pressure
head and effective saturation can be written as c( x) 5 H( x)
1 h( x) and Q( x) 5 S( x) 1 s( x), where H( x) 5 ^c( x)& and
S( x) 5 ^Q( x)& are their means, and h( x) and s( x) are their
perturbations. Suppose we have nf observed saturated hydrau-
lic conductivities, f *( xt), where i 5 1, 2, z z z , nf, and na
observed pore-size distribution coefficient a*( xj), where j 5
1, 2, z z z , na. These data sets will be referred to as the primary
information. In addition, we have nh soil-water pressure mea-
surements, h*( xk), where k 5 1, 2, z z z , nh, and ns effective
saturation observations, s*( xl), where l 5 1, 2, z z z , ns.
These data sets related to the flow process will be called the
secondary information.
One possible approach using both primary and secondary

information to derive the conditional expectation of ln Ks and
ln a is the geostatistical inverse method as presented by Yeh
and Zhang [1996]. That is,

Yc~x0! 5 F 1 O
i51

nf

b i f*i 1 O
k51

nh

lk h*k 1 O
l51

ns

m l s*l
(5)

Zc~x0! 5 A 1 O
j51

na

g j a*j 1 O
k51

nh

zk h*k 1 O
l51

ns

h l s*l

where Yc( x0) and Zc( x0) are cokriged values of ln Ks and ln
a at location x0 using measurements of f * and a* at locations
xi, and xj; measured values of soil-water pressure, h*, and
effective saturation, s* at locations xk, and xl, respectively. The
cokriging weights (b, l, m, g, z, and h) are derived by mini-
mizing the mean square error (MSE) of cokriging estimates
with the knowledge of unconditional covariances of ln Ks, ln a,
c, and Q and cross covariances between these variables. In
their study, the covariances of h and s , and cross covariances
between h and f, h and a , h and s , s and f, s and a , and h and
s are approximated by using a numerical first-order approxi-
mation approach. They pointed out that since cokriging is a
linear estimator, Yc( x0) and Zc( x0) will be conditional means
if and only if that primary and secondary variables are jointly
normal and their covariance and cross-covariance functions
are known perfectly.
The relationships between f, a , h, and s are nonlinear.

Consider one-dimensional vertical flow in an unsaturated po-
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rous medium under steady state flow conditions. Assuming
that the unsaturated hydraulic conductivity of the medium is
described by (3), the natural log of (3) becomes

ln K 5 F 1 f 2 e ~ A1a!~H 1 h! (6)

If the magnitude of a is small (say, a ,, 1), the term, exp (a),
can be approximated by (1 1 a). Then, (6) becomes ln K '
F 1 f 2 L(1 1 a)(H 1 h), where L 5 exp (A). Hence the
governing flow equation can be written in the following form:

q 5 2K~c!F dc

dz 1 1G 5 2e @F1f1L~11a!~H1h!#S dHdz 1 1 1
dh
dzD

5 2Kg~H!e ~ f1aLH1Lh1aLh!F J 1
dh
dzG

(7)

where Kg(H) 5 exp (F 1 LH) and J is the mean gradient
(dH/dz 1 1). Further, one can express the dh/dz term as

dh
dz 5

q
Kg~H!

e2~ f1aLH1Lh1aLh! 2 J (8)

On the basis of (8), h is related to f and a in a nonlinear
fashion. However, if the sum of all the terms in the exponent
is small, (8) can be approximated by

dh
dz <

q
Kg~H!

@1 2 ~ f 1 aLH 1 Lh 1 aLh!# 2 J (9)

Thus h is linearly proportional to f and a. Such a linearized
relation (9), being based on small perturbation theory, is valid
if and only if the variance of the natural log of unsaturated
hydraulic conductivity, ( f 1 aLH 1 Lh 1 aLh) in (8), is
small. As soil becomes less saturated, the variance of unsatur-
ated hydraulic conductivity grows. The nonlinearity becomes
stronger [Yeh et al., 1985a, b; Yeh, 1989;Harter and Yeh, 1996a].
Such a strong nonlinearity in the flow equation implies that in
general h will not be normal, and f, a and h will not be jointly
normal, even if f and a are normal. In addition, the cross
covariances and covariance required in cokriging generally
must be derived from a first-order approximation. As a result,
the use of linear geostatistical inverse techniques may not
produce optimal results even if a large amount of secondary
information is incorporated. This problem is bound to be ex-
acerbated if the nonlinearity of the flow equation is stronger.
The effect of this problem on the geostatistical inverse ap-
proach for saturated flow problems has been demonstrated by
Yeh et al. [1996].
Besides, cokriged ln Ks, ln a and c fields do not satisfy the

continuity equation (1). Suppose we express the conditional
random ln Ks, ln a, and c fields as the sum of their conditional
means and perturbations (i.e., (ln Ks)c 5 Fc( x) 1 fc( x); (ln
a)c 5 Ac( x) 1 ac( x); cc 5 Hc( x) 1 hc( x), where subscript
c denotes the conditional value). Taking a logarithm transfor-
mation of (1) yields

2c

 xi
2 1

~ln Ks 1 ac!

 x2
1

~ln Ks 1 ac!

 xi

c

 xi
5 0 (10)

Substituting the conditional means and perturbations for ln Ks,
ln a, and c into (10), noticing that for lognormal distribution of
the pore-size distribution parameter, ac 5 exp [Ac( x1) 1
ac( x1)] 5 exp [Ac( x1)][1 1 ac( x1) 1 0.5ac

2( x1) 1 z z z],
and taking the expectation, the exact conditional mean flow
equation is

2Hc

 xi
2 1

~Fc1eAcHc!

 x2
1

~Fc1eAcHc!

 xi

Hc

 xi

1 K @eAc~0.5ac
21· · ·!Hc1eAc~ac10.5ac

21· · ·!hc#
 x2

L
1 K @eAc~0.5ac

21· · ·!Hc1eAc~ac10.5ac
21· · ·!hc#

 xi
L z

Hc

 xi

1 K @ fc1eAchc1eAc~ac10.5ac
21· · ·!~Hc1hc!#

 xi

hc
 xi

L
5 0 (11)

According to (11), the exact conditional mean flow equation
consists of two parts. The first part of the equation comprises
terms solely related to the conditional mean fields and the
other involves the expected value of the products of perturba-
tion terms. This implies that the true conditional mean con-
ductivity (Fc), the pore-size distribution coefficient (Ac), and
the head (Hc) do not satisfy the mass balance principle, unless
the second part is zero. The second part will be zero only under
two conditions: (1) all of the head values in the flow domain
are known exactly (i.e., hc( x) is zero everywhere) or (2) all of
the ln Ks and ln a values are specified such that their pertur-
bations are zero.
Even if all heads are known exactly, the cokriged ln Ks and

ln a fields are not necessarily equal to coconditional mean
fields (Fc and Ac). Unless both cokriged ln Ks and ln a fields
and the head field satisfy the flow equation (10). Specifically,
the head field derived from solving (10) with the cokriged ln Ks
and ln a fields will not agree with the observed head field. This
discrepancy is attributed to the fact that cokriging assumes a
linear relationship between f, a , h, and s . Thus Yc and Zc in
(5) are merely approximated coconditional mean fields. To
derive true coconditional mean ln Ks, ln a, and c fields, the
nonlinearity between ln Ks, ln a, and cmust be included in the
estimation procedure. In cases where measurements of ln Ks,
ln a, and c are limited, an inverse model that attempts to
derived conditional mean parameters directly, the conditional
mean flow equation (11) should be employed.

Iterative Geostatistical Inverse Algorithm
Successive Linear Estimator
Our proposed iterative approach attempts to derive the co-

conditional mean ln Ks, ln a, c, and Q fields which not only
honor the measurements at their sample locations but also
satisfy governing flow equation (1). Since the terms in the
second part of (11) cannot be evaluated at this moment, we will
focus on the development of an iterative geostatistical inverse
method that incorporates the nonlinear relations between ln
Ks, ln a, and c. By considering the nonlinearity, we hope that
using the same set of secondary information, this approach will
reveal more detailed spatial variation of the primary parame-
ters than the linear (or noniterative) geostatistical inverse
method. Although estimated fields from our approach are not
necessarily the true coconditional means, they may be called
the coconditional effective ln Ks, ln a, c, and s fields in the
sense they satisfy the mass balance principle. They will be close
to the coconditional means if the variance of unsaturated hy-
draulic conductivity is small (i.e., the magnitude of the second
part in (11) is small) or if the amount of secondary information
is large.
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To accomplish our goal, a successive linear estimator similar
to that by Yeh et al. [1996] is developed. That is,

Yc
~r11!~x0! 5 Yc

~r!~x0! 1 O
k51

nh

lk~xk!@c*k~xk! 2 ck
~r!~xk!#

1 O
l51

ns

m l~x l!@Q*k~x l! 2 Q l
~r!~x l!#

(12)

Zc
~r11!~x0! 5 Zc

~r!~x0! 1 O
k51

nh

zk~xk!@c*k~xk! 2 ck
~r!~xk!#

1 O
l51

ns

h l~x l!@Q*l~x l! 2 Q l
~r!~x l!#

where r is the iteration index, and Yc
(r) and Zc

(r) present the
estimates of conditional means of ln Ks and ln a at iteration r,
respectively. These successive linear estimators are unbiased
since

E@Yc
~r11!# 5 E@Yc

~r!#1O
k51

nh

lkE@c*k2ck
~r!#1O

l51

ns

m lE@Q*l2Q l
~r!# 5 F

(13)

E@Zc
~r11!# 5 E@Zc

~r!#1O
k51

nh

zkE@c*k2ck
~r!#1O

l51

ns

h lE@Q*l2Q l
~r!# 5 A

If r 5 0, Yc
(0) and Zc

(0) correspond to the cokriged ln Ks and
ln a fields from (5), respectively. If r . 0, new estimates are
obtained by adding the weighted sums of [c* 2 c(r)] and [Q*
2 Q(r)] at sample locations to the estimates at the previous
iteration. The c* and Q* denote the soil-water pressure head
and effective saturation values observed at the sample loca-
tions. The corresponding simulated soil-water pressure head
and effective saturation values, based on ln Ks and ln a fields
estimated from the previous iteration, are c(r) and Q(r). The
lk, m l, zk and h l are weighting coefficients.
The weighting coefficients vary with iterations. At each iter-

ation, they are determined in a way similar to that in the
cokriging technique to ensure the minimal MSE of the esti-
mates, that is,

E$@ln Ks 2 Yc
~r11!#2% 5 min

(14)
E$@ln a 2 Zc

~r11!#2% 5 min

More specifically, the MSE of the estimates Yc
(r11), is

E$@ln Ks2Yc
~r11!#2%

5 EH Fln Ks2Yc~r!2O
k51

nh

lk
~r!~c*k2ck

~r!!2O
l51

ns

m l
~r!~Q*l2Q l

~r!!G 2J
5 EH F y ~r!2O

k51

nh

lk
~r!hk

~r!2O
l51

ns

m l
~r!sl

~r!G 2J
5 Ryy

~r!1O
ki51

nh O
kj51

nh

lki
~r!lkj

~r!Rhh
~r!1O

li51

ns O
lj51

ns

m li
~r!m lj

~r!Rss
~r!22O

k51

nh

lk
~r!Ryh

~r!

2 2 O
l51

ns

m l
~r!Rys

~r!12 O
k51

nh O
l51

ns

lk
~r!m l

~r!Rhs
~r! (15)

where y(r), h(r), and s(r) are the residuals representing the
differences between the true fields and the estimated condi-
tional mean fields. Similarly, the MSE associated with Zc

(r11)

can be written as

E$@~ln a!* 2 ZC
~r11!#2%

5 EH F~ln a!*2ZC
~r!2O

k51

nh

zk
~r!~c*k2ck

~r!!2O
l51

ns

h l
~r!~Q*l2Q l

~r!!G 2J
5 EH Fz ~r!2O

k51

nh

zk
~r!hk

~r!2O
l51

ns

h l
~r!sl

~r!G 2J
5 Rzz

~r!1O
ki51

nh O
kj51

nh

zki
~r!zkj

~r!Rhh
~r!1O

li51

ns O
lj51

ns

h li
~r!h lj

~r!Rss
~r!22 O

k51

nh

zk
~r!Rzh

~r!

2 2 O
l51

ns

h l
~r!Rzs

~r!12 O
k51

nh O
l51

ns

zk
~r!h l

~r!Rhs
~r! (16)

where Ryy, Ryh, Rys, Rzz, Rzh, Rzs, Rhh, Rss, and Rhs are
covariances and cross covariances of the residuals. They may
be considered as approximated conditional covariances at the
iteration, r.
Minimization of (15) results in a system of equations for

determining coefficients, lk and m l.

O
i51

nh

l i
~r!Rhh

~r!~xk, x i! 1 O
j51

ns

m j
~r!Rhs

~r!~x l, x j! 5 Ryh
~r!~xk, x!

k 5 1, 2, · · · , nh
(17)

O
i51

nh

l i
~r!Rhs

~r!~x l, x i! 1 O
j51

ns

m j
~r!Rss

~r!~x l, x j! 5 Rys
~r!~x l, x!

l 5 1, 2, · · · , ns

Similarly, system of equations for determining coefficients zk
and h l can be derived as

O
i51

nh

z i
~r!Rhh

~r!~xk, x i! 1 O
j51

ns

h j
~r!Rhs

~r!~x l, x j! 5 Rzh
~r!~xk, x!

k 5 1, 2, · · · , nh
(18)

O
i51

nh

z i
~r!Rhs

~r!~x l, x i! 1 O
j51

ns

h j
~r!Rss

~r!~x l, x j! 5 Rzs
~r!~x l, x!

l 5 1, 2, · · · , ns

Once the new cokriging coefficients, lk, m l, zk, and h l, are
evaluated, Yc

(r11) and Zc
(r11) can then be calculated using

(12).
As ln Ks and ln a fields are improved progressively, the

differences, (c* 2 c(r)) and (Q* 2 Q(r)) will become
smaller than those at the previous iterations. Subsequently,
values of Yc and Zc stabilize, and the spatial variances of the
estimated ln Ks and ln a fields (sy

2 and sz
2, respectively)

gradually approach constant values. To end the iterative pro-
cess, the absolute value of the differences in sy

2 and sz
2 be-

tween two successive iterations are examined. If the differences
are less than prescribed tolerances, the iteration stops. Other-
wise, a new c field is derived by solving flow equation (1) based
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on the newly calculated Yc and Zc and a new effective satura-
tion field is determined by (4). The residual covariances and
cross covariances, Ryy, Rzz, Ryh, Rys, Rzh, Rzs, Rhh, Rhs, and
Rss are then evaluated and thus the new coefficients and new
estimates. This iterative process continues.

Residual Covariances and Cross Covariances

Our iterative approach requires the evaluation of residual
covariances and cross covariances, Ryh, Rys, Rzh, Rzs, Rhh,
Rhs, and Rss at each iteration. On the basis of first-order
analysis of finite element flow equation, soil-water pressure
head at rth iteration can be written as a first-order Taylor
series:

c 5 cc
~r! 1 h ~r! 5 ^@Yc

~r! 1 y, Zc
~r! 1 z# < ^@Yc

~r!, Zc
~r!#

1
^

~ln Ks!
U

~Yc,Zc!

~r!

y ~r! 1
^

~ln a!
U

~Yc,Zc!

~r!

z ~r! (19)

where ^ represents the finite element analogue of (10). The
first-order approximation of the residual of soil-water pressure
head h(r) then becomes

h ~r! <
^

~ln Ks!
U

~Yc,Zc!

~r!

y ~r! 1
^

~ln a!
U

~Yc,Zc!

~r!

z ~r! 5 J ~hy!
~r! y 1 J ~hz!

~r! z

(20)

where J(hy) and J(hz) are the derivatives (or sensitivities) of
soil-water pressure head with respect to ln Ks and ln a, respec-
tively. These derivatives are determined using an adjoint sen-
sitivity analysis subject to boundary conditions [Zhang, 1996;
Yeh and Zhang, 1996]. From (20), the residual covariance of
h(r) and residual cross covariances between h(r) and y(r), h(r),
and z(r) can be determined (assuming ln Ks and ln a are
uncorrelated) as

Rhh
~r!~ xi, xj! < J ~hy!

~r! Ryy
~r!~ xm, xn!@ J ~hy!

~r! #T 1 J ~hz!
~r! Rzz

~r!~ xm, xn!@ J ~hz!
~r! #T

Ryh
~r!~ xi, xj! < J ~hy!

~r! Ryy
~r!~ xm, xn! (21)

Rzh
~r!~ xi, xj! < J ~hz!

~r! Rzz
~r!~ xm, xn!

where i and j 5 1, 2, z z z , nh; m and n 5 1, 2, z z z , N (total
number of elements); J(hy) and J(hz) are sensitivity matrices of
nh 3 N, which are also evaluated using the adjoint state
sensitivity approach. The superscript T denotes the transpose.
The sensitivities of effective saturation Q with respect to ln

Ks and ln a are defined as

J ~sy!
~r! 5

Q

~ln Ks!
U

~Yc,Zc!

~r!

J ~sz!
~r! 5

Q

~ln a!
U

~Yc,Zc!

~r!

(22)

Similarly, residual covariance of effective saturation s(r) and
residual cross covariances between s(r) and y(r), s(r), and z(r)

can be determined by

Rss
~r!~ xi, xj! < J ~sy!

~r! Ryy
~r!~ xm, xn!@ J ~sy!

~r! #T 1 J ~sz!
~r! Rzz

~r!~ xm, xn!@ J ~sz!
~r! #T

Rys
~r!~ xi, xj! < J ~sy!

~r! Ryy
~r!~ xm, xn! (23)

Rzs
~r!~ xi, xj! < J ~sz!

~r! Rzz
~r!~ xm, xn!

and the residual cross covariance between s(r) and z(r) is given
by

Rhs
~r!~ xi, xj! < J ~sy!

~r! Ryy
~r!~ xm, xn!@ J ~hy!

~r! #T 1 J ~sz!
~r! Rzz

~r!~ xm, xn!@ J ~hz!
~r! #T

(24)

Notice that the calculation of the residual covariance and
cross-covariance functions Ryh, Rys, Rzh, Rzs, Rhh, Rhs, and
Rss requires the knowledge of residual covariances Ryy and
Rzz, which represent the covariances of y and z (or residuals of
ln Ks and ln a), respectively. These covariances can be ex-
pressed as

Ryy
~r11!~xo, xp! 5 Ryy

~r!~xo, xp! 2 O
k51

nh

lk
~r!Ryh

~r!~xo, xk!

2 O
l51

ns

m l
~r!Rys

~r!~xo, x l!

(25)

Rzz
~r11!~xo, xp! 5 Rzz

~r!~xo, xp! 2 O
k51

nh

zk
~r!Rzh

~r!~xo, xk!

2 O
l51

ns

h l
~r!Rzs

~r!~xo, x l!

where xo and xp are any locations in the domain (o and p 5 1,
2, z z z , M; M is the total number of elements), and lk

(r), m l
(r),

zk
(r), and h l

(r) are weighting coefficients at iteration r. If xo 5
xp, Ryy and Rzz correspond to the variances of y and z. If r 5
0, Ryy and Rzz are equal to the cokriged covariances of ln Ks
and ln a, which are determined according to

Ryy
~1!~xo, xp! 5 Cf f~xo, xp! 2 O

i51

nf

b iCf f~xo, x i!

2 O
k51

nh

lk
~0!Cfh~xo, xk! 2 O

l51

ns

m l
~0!Cfs~xo, x l!

(26)

Rzz
~1!~xo, xp! 5 Caa~xo, xp! 2 O

j51

na

g jCaa~xo, x j!

2 O
k51

nh

zk
~0!Cah~xo, xk! 2 O

l51

ns

h l
~0!Cas~xo, x l!

where bI, lk
(0), and m l

(0) are cokriging coefficients for ln Ks;
g j, zk

(0), and h l
(0) are coefficients for ln a used in (5). Cff and

Caa denote unconditional covariances of ln Ks and ln a, which
are assumed to be given. Cfh, Cfs, Cah, and Cas are the
unconditional cross-covariances between ln Ks, ln a, c, and Q.
They are derived from the first-order analysis similar to (21),
(22), (23), and (24).
Condition numbers of matrix equations (17) and (18) can be

large if the number of measurements of soil-water pressure
and effective saturation is large. Truncation errors can thus be
amplified and affect the estimation procedure. To avoid this
problem, two relaxation terms, « and n, are added to the diagonals
of the matrices in (17) and (18) during the iteration. That is,

O
i51

nh

l iRhh~xk, x i! 1 O
j51

ns

m jRhs~x l, x j! 1 « ~r!lk 5 Ryh~xk, x!

k 5 1, 2, · · · , nh

(27)

O
i51

nh

l iRhs~x l, x i! 1 O
j51

ns

m jRss~x l, x j! 1 n ~r!m l 5 Rys~x l, x!

l 5 1, 2, · · · , ns
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O
i51

nh

z iRhh~xk, x i! 1 O
j51

ns

h jRhs~x l, x j! 1 « ~r!zk 5 Rzh~xk, x!

k 5 1, 2, · · · , nh
(28)

O
i51

nh

z iRhs~x l, x i! 1 O
j51

ns

h jRss~x l, x j! 1 n ~r!h l 5 Rzs~x l, x!

l 5 1, 2, · · · , ns

In general, large values of « and n reduce the condition num-
bers of the matrices and oscillations during iterations but they
decrease the convergence rate. On the other hand, small values
of these relaxation terms can lead to a rapid convergence of the
iterative procedure. Nevertheless, they may result in numerical
instability and in turn the divergence of the solution in the
cases of highly heterogeneous media or in the cases where a
large amount of secondary information is used. To avoid these
problems, the « and n values are assigned dynamically. They
are set to be a prescribed fraction of the maximum values of
Rhh( xk, xk) and Rss( xl, xl) at each iteration. Since the values
of Rhh( xk, xk) and Rss( xl, xl) decreases as the iteration
proceeds, the values of « and n decrease accordingly. These
relaxation terms do not represent the measurement errors as
used in cokriging [e.g., Dietrich and Newsam, 1989] but merely
a technique to control the numerical instability [Yeh et al.,
1996].

Numerical Experiments
As mentioned previously, a detailed characterization of the

vadose zone is a difficult and costly task. As a result, few
large-scale field experiments have focused on the characteriza-
tion of hydraulic properties of the vadose zone in the past. The
Las Cruces experiments [Wierenga et al., 1989] provided a large
number of measurements of water release curves but no direct
measurements of unsaturated hydraulic conductivity. In addi-
tion, c and Q data sets were collected under transient condi-
tions which are not suitable for use in our steady flow model.
Hence assessment of our inverse method for identifying hy-
draulic parameters has to rely on numerical experiments. Nev-
ertheless, numerical experiments are always the first and nec-
essary step for testing any inverse models.
The numerical experiments in our study consider steady

state nonuniform flows in two-dimensional hypothetical vadose
zones. The domain of the vadose zones is a 7 3 7 m vertical
plane which is discretized uniformly into 35 3 35 finite ele-
ments with dx 5 d y 5 20 cm. The ln Ks and ln a values for
each element are generated using a random field generator
[Gutjahr, 1989], assuming correlation scales for both ln Ks and
ln a are 300 and 100 cm in the horizontal and vertical direc-
tions, respectively. In addition, ln Ks and ln a are assumed
independent of each other. The left and right boundaries of the
flow domain are defined as impermeable, and the lower
boundary is defined as water table. The central 10 nodes of the
upper boundary are set to be a prescribed head boundary,
while the remaining parts of the top boundary are specified as
no flux boundaries. Once the hypothetical vadose zone is gen-
erated, a finite element model [Yeh et al., 1993] is used to solve
the primary flow problem (1) with the aid of initial guess
solution [Harter and Yeh, 1993; Zhang, 1996] to obtain the
soil-water pressure head c and effective saturation Q fields.

These perfectly known ln Ks, ln a, c, and Q fields are then
regarded as the real-world analogues (true fields) where mea-
surements of the soil parameters and flow processes are taken.
Plate 1 shows the hypothetical ln Ks, ln a, c, and Q fields
corresponding to case 2 in our study (see Table 1). Twelve ln
Ks and ln a values (nf 5 na 5 12) were sampled at a 4 3 3
uniform grid over the entire domain as our primary informa-
tion (Plates 1a and 1b). The circles in Plates 1a and 1b indicate
the location of the samples. The secondary information, soil-
water pressure head values, was then taken from an 8 3 8
uniform grid, resulting in a total of 64 soil-water pressure head
measurements (nh 5 64) (Plate 1c). Similarly, a total of 49
sampled Q values (ns 5 49) was obtained from a 7 3 7
uniform sampling grid (Plate 1d).
To test our iterative approach, a total of 16 cases reflecting

different soil parameters and different flow conditions (differ-
ent prescribed head value at the upper boundary) was exam-
ined. Statistical properties (mean value of ln a, variances of ln
Ks and ln a) of the soils and the prescribed boundary heads in
these cases are tabulated in Table 1. The mean value of ln Ks

Plate 1. Spatial distributions of (a) ln Ks, (b) ln a, (c) c, and
(d) Q in a hypothetical vadose zone (case 2).

Table 1. Statistical Properties of Soils and Boundary
Conditions for the Numerical Experiments

Case

Variance
of ln Ks,

s f
2

Variance
of ln a,

sa
2

Geometric
Mean of
aG, m21

Prescribed Head
at Upper

Boundary H, m

1 1.0 0.1 1.0 21.0
2 1.0 0.1 1.0 23.0
3 1.0 0.1 1.0 25.0
4 4.0 0.1 1.0 21.0
5 4.0 0.1 1.0 23.0
6 4.0 0.1 1.0 25.0
7 0.1 0.1 1.0 21.0
8 0.1 0.1 1.0 23.0
9 0.1 0.1 1.0 25.0
10 1.0 0.4 1.0 21.0
11 1.0 0.4 1.0 23.0
12 1.0 0.4 1.0 25.0
13 1.0 0.01 1.0 4.0
14 1.0 0.01 1.0 23.0
15 1.0 0.01 1.0 25.0
16 1.0 1.0 0.1 23.0
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for all the cases is specified as 24 m/h. Notice that the mag-
nitude of the mean value does not affect our inverse method
since the flow condition is steady.
Two quantitative criteria were used to evaluate the perfor-

mance of both the noniterative and the iterative approaches.
They are

Q1 5
1
N U O

i51

N

~woi 2 wei!U
(29)

Q2 5
1

N 2 1 O
i51

N

~woi 2 wei!2

where u u is the absolute value, and woi and wei denote the
true and estimated parameter values (w 5 ln Ks or ln a) at the
ith location, respectively. N is the total number of elements in
the domain. Q1 and Q2 correspond to the measures of bias
(absolute value here) and mean square error of our estimation,
respectively, with respect to the true ln Ks and ln a fields. The
following two quantities were used to quantify the improve-
ment in the estimates due to the use of our iterative approach:

P1 5
Q1~Geostatistical! 2 Q1~Iterative!

Q1~Geostatistical!
3 100%

(30)

P2 5
Q2~Geostatistical! 2 Q2~Iterative!

Q2~Geostatistical!
3 100%

where P1 and P2 presents percentages of the improvement on
the bias and mean square error, respectively.
Contour plots of estimated ln Ks and ln a fields for case 2 by

both approaches are shown in Plate 2, for visual evaluation of
the advantage of our iterative geostatistical approach over the
noniterative approach. Comparing these results with the true
fields, both noniterative and iterative geostatistical inverse ap-
proaches mimic general trends of true ln Ks and ln a fields.
However, ln Ks and ln a fields estimated by the noniterative
approach are much smoother than those by the iterative ap-
proach and the true fields. On the other hand, the results from
the iterative approach reveals some detailed variations of ln Ks
and ln a fields that resemble those of the true fields. They
indicate the improvement due to the incorporation of the non-
linear relationship between f, a, and h. In comparison with the
true fields, the estimated fields by our iterative approach are
smoother. This smooth nature of our estimates is expected
since only a small amount of primary and secondary informa-
tion are used in the estimation. With such spare data sets (i.e.,
the stochastic inverse problem [Yeh et al., 1996]) the best one
can do is to obtain close estimates of the coconditional mean
fields which are expected to be smoother than the reality.
Figure 1a illustrates the convergence pattern of our iterative

approach, where the maximum values of [c* 2 c(r)] and
[Q* 2 Q(r)] at sample locations as a function of the iteration
number are depicted. At the zeroth iteration these values cor-
respond to the differences between the observed and simulated
c and Q using ln Ks and ln a fields estimated by noniterative
approach. As indicated in the figure, these differences decrease
rapidly as the iteration commences. Behavior of the perfor-
mance measures (Q1 and Q2) for ln Ks and ln a as a function
of iteration is presented in Figures 1b and 1c. Variances of the
estimated conditional mean fields of ln Ks and ln a grow as the
number of iterations increases but stabilize at approximately

the 20th iteration (Figure 1d). Final values of these variances
are 0.74 and 0.041 for s f

2 and sa
2, respectively. They are greater

than those by the noniterative approach and smaller than those
of the true fields (s f

2 5 1.0 and sa
2 5 0.1). This result again

is consistent with our expectation since our approach attempts
to derive the coconditional mean fields, instead of one possible
realization of the ensemble of the stochastic processes.
On Tables 2 and 3, the estimated fields by our iterative

approach are much better than those by the non-iterative ap-
proach in terms of bias and MSE, as suggested by the percent-
age of improvements. However, our iterative approach pro-
duces more biased ln a fields than the noniterative approach
for some cases (such as cases 9 and 15). While the improve-
ment of bias of ln a, and MSE of both ln Ks and ln a decreases
as the soil becomes less saturated (large negative values of H),
the improvement for the bias of ln Ks varies. The decrease, as
the soil becomes less saturated, may be attributed to failure of
the first-order approximation of the covariances and cross-
covariances in (21)–(24) under dry conditions.
Our iterative approach provides better estimates of unsat-

urated hydraulic conductivity parameter fields but it requires
significantly more computational effort, especially, as the
amount of secondary information increases. It took a CPU
time of 20 hours (on an IBM RISC/6000/590 workstation with
512-Mb memory) for most of the cases in this study. The
adjoint analysis to evaluate the sensitivity of soil-water pres-
sure head with respect to ln Ks and ln a, and the calculation of
error covariances and cross covariances requires a significant
amount of CPU time. Recent rapid advances in computer
technology and decreases in the price of high-end workstations
may ease the computational burden in the future.

Plate 2. Comparisons of (a, d) true ln Ks and ln a fields and
(b, e) those estimated by the noniterative and (c, f) the iterative
geostatistical inverse approach.
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Finally, while results of the numerical experiments appear
interesting, application of this iterative geostatistical inverse
approach to field situations remains to be explored. Differ-
ences in the sample volume of various sampling devices (e.g.,
tensiometers, neutron probes, and time domain reflectrom-
eters), methods for in situ measurements of effective saturation
are issues to be addressed. In addition, evaluation of the co-
variance functions of f and a may require many measurements
and it will be affected by errors in the measurements [see Russo
and Jury, 1987a, b]. To alleviate this problem, a maximum
likelihood approach used by Kitanidis and Vomvoris [1983] can
be incorporated in our approach. Also, unsaturated hydraulic

property models other than the Gardner and Russo model
should be considered.

Conclusions
On the basis of the results of our studies the iterative

geostatistical inverse approach using both primary and second-
ary information is a promising tool for delineating detailed
spatial distribution of unsaturated hydraulic heterogeneities.
Estimates from the iterative geostatistical inverse approach are
better than those derived from noniterative approach. The
correlation structure embedded in both approaches ensures

Figure 1. Convergence patterns of the iterative geostatistical inverse approach for case 2.

Table 2. Comparison of the Bias of the Estimated ln Ks
and ln a Fields From Noniterative Inverse Method and
Iterative Inverse Method

Case

Noniterative
Inverse Iterative Inverse

P1 of
ln Ks,
%

P1 of
ln a,
%

Bias of
ln Ks

Bias of
ln a

Bias of
ln Ks

Bias of
ln a

1 0.1917 0.0261 0.1408 0.0072 26.55 72.41
2 0.1910 0.0069 0.1577 0.0007 17.43 89.86
3 0.1736 0.0012 0.1395 0.0004 19.64 66.67
4 0.3844 0.0297 0.0457 0.0112 88.11 62.16
5 0.4263 0.0058 0.2480 0.0041 41.82 29.31
6 0.4173 0.0012 0.2880 0.0009 30.98 25.00
7 0.0517 0.0269 0.0414 0.0029 19.92 89.21
8 0.0475 0.0064 0.0380 0.0038 20.00 40.63
9 0.0501 0.0029 0.0437 0.0048 12.77 239.58
10 0.1101 0.0708 0.0223 0.0160 79.74 77.40
11 0.0505 0.0905 0.0308 0.0397 39.01 56.13
12 0.1620 0.0784 0.0710 0.0335 56.17 57.27
13 0.0399 0.0105 0.0267 0.0027 34.83 74.28
14 0.0548 0.0017 0.0104 0.0001 81.02 94.11
15 0.0454 0.0012 0.0001 0.0015 99.78 225.00
16 0.0695 0.0636 0.0418 0.0029 39.86 95.44

Table 3. Comparison of the Mean Square Errors of
Estimated ln Ks and ln a Fields From Noniterative and
Iterative Inverse Methods

Case

Noniterative
Inverse Iterative Inverse

P2 of
ln Ks,
%

P2 of
ln a,
%

MSE
ln Ks

MSE
ln a

MSE
ln Ks

MSE
ln a

1 0.1460 0.0204 0.0659 0.0081 55.48 60.29
2 0.2008 0.0119 0.0931 0.0061 53.64 48.74
3 0.2272 0.0114 0.1077 0.0061 52.60 46.49
4 0.7225 0.0324 0.1970 0.0143 74.50 55.86
5 0.8494 0.0151 0.3641 0.0073 57.13 51.66
6 0.9240 0.0114 0.4918 0.0070 46.77 38.59
7 0.0146 0.0107 0.0088 0.0049 39.73 54.21
8 0.0187 0.0112 0.0107 0.0044 42.78 60.71
9 0.0207 0.0128 0.0109 0.0043 47.34 66.41
10 0.1768 0.0529 0.0753 0.0272 57.41 48.58
11 0.2209 0.0711 0.1316 0.0241 40.43 66.10
12 0.3378 0.0811 0.1957 0.0241 42.07 70.28
13 0.1060 0.0030 0.0471 0.0009 55.57 70.00
14 0.1126 0.0013 0.0498 0.0008 55.77 38.46
15 0.1278 0.0009 0.0636 0.0008 50.23 11.11
16 0.1324 0.0189 0.0587 0.0064 55.66 66.13
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our estimates to reflect the spatial structure of the vadose zone.
A strong cross correlation between primary and secondary
information improves our point estimates. Our iterative
method enhances such a cross correlation and in turn, results
in better estimates. These estimates are, however, not the
coconditional mean fields but merely coconditional effective
parameter fields. They preserve the measured values of ln Ks,
ln a, c, and Q at the sample locations. Further, the c and Q
fields are consistent with the estimated ln Ks and ln a field in
the sense that they satisfy the mass balance principle. Although
further theoretical development is needed to derive the exact
coconditional mean fields and to improve the first-order esti-
mate of the covariances, our study presents an initial attempt
to address the complex parameter identification problem in the
vadose zone. For many practical problems the noniterative
geostatistical inverse approach presented by Yeh and Zhang
[1996] may be a reasonable tool.
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