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ABSTRACT 
This paper presents an introductory overview of recently developed stochastic theories for tackling spatial variability 
problems in predicting groundwater flow and solute transport. Advantages and limitations of the theories are discussed. 
Lastly, strategies based on the stochastic approaches to predict solute transport in aquifers are recommended. 
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INTRODUCTION 

Predicting any natural process is a very difficult task. The complexity of natural systems often prohibits our 
understanding of governing principles of the systems. For some natural systems such as groundwater 
reservoirs, we seem to understand the governing principle of the system (i.e. many laboratory and small-scale 
field experiments have substantiated the validity of Darcy’s law for flow through porous media). The 
principle, however, is often limited to a narrow range of scales. When applying the principle to field-scale 
problems, we encounter the problem of extrapolating the principle to large-scale systems, due to the spatial 
and temporal variability of system characteristics. Consequently, our predictive ability for flow and solute 
transport through large-scale geological reservoirs is hindered. 

Spatial variability of hydrologic parameter values in field situations has long been recognized. Accurate 
predictions require a detailed characterization of the spatial distribution of hydrologic parameter values in 
an aquifer. In view of physical, time, and economic constraints, however, such an approach is currently not 
considered feasible for studying large-scale aquifers. Therefore, most analyses of groundwater flow and solute 
transport in the past had to assume the aquifer homogeneous or to characterize the aquifer with a limited 
number of samples. On the other hand, many methods of estimating hydrologic properties of aquifers (such 
as aquifer tests) have to rely on the homogeneity assumption because of mathematical difficulties in including 
the heterogeneity. Thus, logical questions to ask are: how accurate is the prediction based on the 
homogeneity or simplified assumptions of heterogeneity? Are the aquifer parameter values estimated by 
analyses using the homogeneity assumption useful for our predictive models? 

The purpose of this paper is to address these problems and to provide an introductory overview of the 
stochastic approaches which have been developed recently to tackle these problems in field-scale aquifers. 
Finally, general strategies of predicting groundwater flow and contaminant transport in field-scale aquifers 
are recommended. 
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CONCEPTS OF GROUNDWATER FLOW AND TRANSPORT MODELLING 

Scales of heterogeneity, REV, dispersion and measurement scale 

groundwater flow and convection -dispersion equations. For groundwater flow the governing equation is 
Predictions of solute transport in aquifers generally have to rely on mathematical models based on 

ah 
V . ( K  * V h )  = S, - 

at 

where K is the hydraulic conductivity tensor, h is the hydraulic head, and S ,  is the specific storage. For given 
boundary and initial conditions, and hydraulic parameter values, (1) can be solved for a hydraulic head 
distribution. Then, with the knowledge of head distribution, conductivity and porosity, the direction and 
magnitude of groundwater flow can be determined by using Darcy’s law. 

For simulating solute transport, a convection -dispersion equation often used is 

where c is the concentration of the solute, D is the dispersion coefficient, and u is the groundwater velocity. 
The dispersion coefficient is generally defined as the product of velocity, u, and dispersivity, a (i.e. D = au) 
which is regarded as the transport property of a porous medium. 

In order to apply such mathematical models to a field situation, hydrologic parameters such as hydraulic 
conductivity, storage coefficient, and dispersivity, reflecting physical properties of the site have to be 
specified. However, these parameter values commonly exhibit a high degree of spatial variability in large- 
scale aquifers. As an example, Figures l a  and b show hydraulic conductivity distributions in two cross- 
sections of the sandy aquifer at the Borden site in Canada. The cross-sectional profiles, resulting from a 
sampling effort which involves a total of 1279 hydraulic conductivity measurements, manifest randomly 
distributed and complex lenticular structures. Without such a detailed mapping, the aquifer would have been 
treated as a homogeneous aquifer with a uniform hydraulic conductivity, and effects of these complex 
structures on flow and solute transport, thus, would have been lost. Obviously, to delineate such complex 
features and to predict their effects would require an intensive sampling effort and a high-resolution 
numerical simulation. 

In addition, the spatial variability also varies with the scale of the problem, as pointed out by many 
researchers (e.g. Dagan, 1986; Gelhar, 1986). For example, the size of the heterogeneity within a core sample 
is related to variations in pore size and geometry. Such variabilities are denoted as the laboratory-scale 
heterogeneity. On the other hand, heterogeneities due to geologic stratification or layering in a formation are 
classified as the field-scale heterogeneity. The regional-scale heterogeneity represents the variation of 
geologic formations or facies. Variations among sedimentary basins are, then, classified as the global-scale 
heterogeneity, and so on. Therefore, heterogeneity exists at all scales of observations. This scale-dependent 
heterogeneity further complicates the analysis of flow and solute transport in aquifers. 

To resolve problems of heterogeneities at the laboratory scale, hydrologists rely on the concept of 
representative elementary volume (REV). For example, in a saturated core sample, flow takes place through 
a complex network of interconnected pores or openings. Obviously, it is practically impossible to describe in 
any exact mat hematical manner the intricate pore structure which controls the flow through porous media. 
As a result, one has to abandon the basic equations governing fluid flow (such as the Navier-Stokes 
equations) at the pore-scale level. Similar to the continuum hypothesis in fluid mechanics, groundwater 
hydrologists have to overlook the microscopic or pore-scale flow patterns inside individual pores and 
consider some average flow over a certain volume of porous media. This volume over which the flow is 
averaged is defined as an REV (Bear, 1979). Using the REV concept, we essentially bypass both the 
microscopic level, at which we consider what happens to each fluid particle, and the pore level, at which we 
consider the flow pattern within each pore and between pores, and then move to the macroscopic level at 
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Figure 1.  Cross-sectional view of the hydraulic conductivity distribution along a longitudinal and a transverse direction in the Borden 
Sandy aquifer (Sudicky, 1986) 

which only average phenomena over the REV are considered. As a result, the properties we define represent 
averaged values, and the medium can be considered as a continuum over which our differential calculus 
applies. 

Because the predicted flow behaviour based upon classic groundwater flow equations represents an 
average over the REV, flow behaviours deviating from the average due to the heterogeneity at scales smaller 
than the size of the REV are overlooked. Generally, neglecting the effect of small-scale variations has little 
impact on the assessment of groundwater quantity (e.g. average discharge, groundwater availability, etc.). 
Nevertheless, such small-scale variations can have profound impacts on transport of solute in porous media, 
because the small-scale variations represent fast or slow flow channels where solutes are likely to travel, thus 
resulting in the spread of solutes. 

To include effects of small-scale variations in the analysis of solute transport in porous media, the concept 
of hydrodynamic dispersion is used. That is, concentration fluxes from the fast and slow flow channels are 
included in a transport equation via a dispersive flux, and furthermore Fick's law is assumed to be valid for 
this flux (dispersive flux is linearly proportional to the concentration gradient). Therefore, the classical solute 
transport equation includes a convective and a dispersive term, representing mass fluxes resulting from the 
average flow velocity and flow velocities deviating from the average, respectively. Equation 2 manifests this 
concept: the first term on the right-hand side represents the dispersive flux, and the second term represents 
the convective flux. This dispersion approach is similar to the molecular diffusion concept in chemistry, and 
hydrodynamic dispersion in surface water hydrology. However, the velocity variation in porous media under 
steady-state uniform flow conditions is mainly attributed to the heterogeneity of porous media, whereas in 
diffusion it is the random collision of molecules, and in surface water hydrology it is the channel roughness 
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and shear effects, etc. In addition, many laboratory experiments in the past also demonstrated that the effect 
of the small-scale heterogeneity on solute movement in porous media varies with the magnitude of the 
average groundwater velocity. It is generally agreed that the hydrodynamic dispersion coefficient is 
approximately linearly proportional to the average velocity. The constant of proportionality is defined as 
dispersivity, a parameter representing heterogeneities of porous media at scales smaller than the size of the 
REV (i.e. the average grain size in a uniformly packed soil column, Bear, 1972.) 

Such an approach based on the REV concept, using Equations 1 and 2, seems adequate for dealing with 
laboratory-scale heterogeneity. In fact, results of numerous laboratory experiments involving uniformly 
packed sandboxes or soil columns have confirmed the validity of the REV approach (Bear, 1972). The REV 
concept, thus, becomes the foundation of many principles of groundwater hydrology. However, when we 
apply these principles to large-scale aquifers, we somehow forget the basic assumption of the REV approach. 
That is, the flow behaviour predicted by a continuum-based REV model represents an average behaviour of 
the flow over the REV, and does not necessarily depict phenomena measured or observed at scales much 
smaller than the size of the REV. For example, the drawdown predicted by the Theis solution, which assumes 
that the aquifer is homogeneous, will be different from that observed in a well tapping a local clay lens. The 
drawdown at this observation well will reflect the response of the clay lens to the stress caused by pumping 
and will not necessarily represent the response of other parts of the aquifer, unless the aquifer is truly 
homogeneous. By the same token, one may not be able to obtain a meaningful transmissivity value estimated 
from hydrography at this well using methods that assume aquifer homogeneity. This problem can be 
attributed to the fact that the screen length over which the hydraulic head is averaged in a well may not agree 
with the size of the REV used in the classical continuum theory for homogenizing the heterogeneous aquifer. 
Hence, to be consistent with the continuum theory, the measurement scale (screen length in this case) should 
be the same as (or larger than) the REV which allows us to treat the aquifer as a homogeneous one. 

Similarly, the concentration calculated from Equation 2 depicts the average concentration of a chemical 
species over the REV only. This implies that the predicted concentration based on Equation 2 may not be 
equivalent to that measured at a volume much smaller than the size of the REV. Again, to be consistent with 
the theory, the measurement scale for the concentration must be at least the same as the size of the REV. 
Generally, this scale requirement is met in a laboratory tracer experiment where a soil column is packed with 
a relatively uniform sand. In such a soil column, the variation in grain size and geometry contributes to the 
heterogeneity and the concentration of a tracer collected at  the end of the column is often the average 
concentration over the cross-sectional area of the column which contains numerous grains or pores. Because 
of this average and the large contrast between the size of the heterogeneity and the cross-sectional area of the 
soil column, success in predicting tracer movement in soil columns has been widely reported. 

On the other hand, an aquifer consists of heterogeneities of many different scales, such as variations in pore 
geometry and size, layers, facies, and sedimentary structures. Treating such an aquifer as a homogeneous one 
in mathematical analyses is tantamount to employing a large-size REV, many times the largest heterogeneity. 
However, our sampling devices (such as the screen length of an observation well) are generally much smaller 
than the size of the REV. Therefore, predictions based upon an assumption of homogeneity will likely deviate 
from our observations unless the sampling interval is much larger than the size of heterogeneity (e.g. Black 
and Freyberg, 1987). 

APPROACHES FOR SPATIAL VARIABILITY 

Deterministic approach 
For decades, hydrologists have relied on deterministic approaches to predict flow and solute transport in 

many highly heterogeneous aquifers. The deterministic approach implies that parameter values in a 
mathematical model are known and specified at all points in the solution domain. The deterministic 
approach can be subdivided into an equivalent homogeneous and a heterogeneous approach. The equivalent 
homogeneous approach assumes that a heterogeneous aquifer can be treated as an equivalent homogeneous 
one whose hydraulic properties are constant in space. Such constant properties are called effective properties 
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and are generally obtained by employing large-scale hydraulic tests and inverse procedures, such as aquifer 
tests, or by averaging many small-scale tests (i.e. the arithmetic, geometric, or harmonic mean of conductivity 
values obtained from slug tests). These effective parameters are then used as input to mathematical models to 
predict groundwater flow or transport of contaminants in the aquifer in an average sense. The heterogeneous 
approach, on the other hand, utilizes all available field data to delineate heterogeneities of the aquifer. This 
approach is intended to characterize the behaviour of groundwater flow or transport of contaminants in 
aquifers at high resolutions. 

Regardless of whether treating the aquifer as a homogeneous or heterogeneous one, the deterministic 
approaches suffer from many drawbacks. Firstly, there are no conclusive means to obtain effective 
parameters of the equivalent homogeneous aquifer using data from large-scale hydraulic tests. For example, 
one must determine how many observation wells are needed to  employ Theis' solution properly to estimate 
the effective transmissivity. In other words, the question raised earlier on consistency between the scales of 
field data and model's REV is never answered. On the other hand, if one relies on small-scale hydraulic tests 
(e.g. slug tests and conductivity measurements using core samples), the hydraulic parameter values measured 
at various parts of the aquifer are likely to be different. Then, logical questions to ask are: how are the data to 
be averaged to obtain the effective hydraulic properties for the equivalent homogeneous aquifer? And 
provided that such an effective hydraulic conductivity can be defined, how can the predicted results be related 
to our observations? The heterogeneous approach is not immune from problems either: can we predict flow 
and transport in heterogeneous aquifers using only limited data collected from small-scale tests? How does 
one assign aquifer property values at locations where no measurements were made? What is the magnitude 
of uncertainty in our predictions if only a limited number of data are available? To answer these questions, a 
probabilistic approach is necessary, and a stochastic approach seems most appropriate. 

Stochastic approach 
Although the theories based on stochastic approaches to tackle spatial variability problems in ground- 

water hydrology have been developed only in the past decade, many recent field experiments in both 
saturated zones (Freyberg, 1986; Sudicky, 1986; Garabedian et a)., 1991) and unsaturated zones (Yeh et al., 
1986; Greenholtz et al., 1988; McCord et al., 1991) have already indicated that the stochastic theories are 
promising at least for geological formations with relatively mild heterogeneities, regardless of many 
simplifying assumptions used in their development. In the following sections, the stochastic approach is 
introduced by first discussing the concept of statistical representation of heterogeneity. Then, recently 
developed stochastic theories of flow and transport in groundwater systems are discussed. Finally, strategies 
for predicting flow and transport of contaminants in large-scale aquifers are suggested. 

STATISTICAL REPRESENTATION OF HETEROGENEITY 

Aquifers are inherently heterogeneous at various observation scales. Characterizing the heterogeneity at  a 
scale of our interest generally requires information of hydrologic properties a t  every point in the aquifer. To 
delineate such a detailed hydraulic property distribution in aquifers of sizes of tens of kilometres obviously 
requires numerous measurements, considerable time, and great expense, and is generally considered 
impractical and infeasible. The alternative is to utilize a small number of samples to estimate the variability of 
parameters in a statistical framework. That is, the spatial variation of a property is characterized by its 
probability distribution estimated from samples. For instance, Law (1944) and Bennion and Griffiths (1966) 
reported that the distribution of porosity data in an aquifer is normal. Hoeksema and Kitanidis (1985) 
suggested that the spatial distribution of storage coefficient may be log-normal. Hydraulic conductivity 
distributions (Figure 2) are usually reported to be log-normal (Law, 1944; Bulness, 1946; Warren et al., 1961; 
Bakr, 1976; Freeze, 1975; and Sudicky, 1986) or other (Jensen et al., 1987). 

Based on such a statistical approach, Freeze (1975) treated hydraulic conductivity as a random variable 
and analysed the uncertainty in groundwater flow modelling. However, recent analyses of hydraulic 
conductivity data (Bakr, 1976; Byers and Stephens, 1983; and Hoeksema and Kitanidis, 1985) showed that 
although the hydraulic conductivity values vary significantly in space, the variation is not entirely random, 
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Figure 2. Frequency histograms for In(K) and K at the Borden site 

but correlated in space. Such a correlated nature implies that the parameter values are not statistically 
independent in space and they must be treated as a stochastic process, instead of a single random variable. 

To explain the stochastic conceptualization of the spatial variability of hydrologic parameters, the 
hydraulic conductivity data measured along a vertical bore hole in a sandstone in Illinois (Bakr, 1976) are 
used as an example (see Figure 3). The value of hydraulic conductivity at a point, xo, along the bore hole can 
be conceptualized as one of many possible geological materials that may have been deposited at  that given 
point. Thus, the hydraulic conductivity at that point is a random variable, K(xo,  w). The w indicates that 
there are many possible values of K at xo. Similarly, the hydraulic conductivity values at other locations 
along the bore hole are random variables. As a results, hydraulic conductivity values of the entire depth of the 
bore hole may be considered as a collection of many random variables in space. Namely, if conductivity is 
observed at locations xl, x2, xg . . . x,, then K ( x , ,  0 )  is a random variable, K ( x , ,  o) another random variable, 
and so on out to K ( x , ,  (a). Each has a probability distribution and furthermore, the probability distributions 
may be interrelated. The chance of finding a particular sequence of hydraulic conductivity values along the 
bore hole, K(x ,  a,), depends not only on the probability distribution of the hydraulic conductivity at one 
location but also on those at other locations. This implies that actual hydraulic conductivity values along the 
bore hole are one possible sequence of K(x, wl) out of all the possible sequences, K ( x ,  w). In the vocabulary 
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Figure 3. Log saturated conductivity values of Mt. Simon Sandstone, Illinois (Bakr, 1976) 
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of stochastic processes, the probability of finding of the sequence is then defined as the joint probability 
distribution or joint distribution. All these possible sequences are called an ensemble, and a realization refers 
to one of the possible sequences. 

In order to determine the probability of occurrence of a particular sequence of random variables, a joint 
distribution of these random variables must be known. This joint distribution is completely defined only if 
the probabilities associated with all possible sequences of K ( x ,  w )  values along a bore hole are known. 
Obviously, the joint distribution is not available in real-life situations because hydraulic conductivity values 
sampled along a bore hole represent only one realization out of the ensemble of the hydraulic conductivity 
values along the bore hole. Therefore, one must resort to simplified assumptions, namely, stationarity and 
ergodicity. 

Stationarity (or strict stationarity) implies that any statistical property (joint distribution, mean, and 
variance) of a stochastic process remains stationary or constant in space. Ergodicity means that by observing 
the spatial variation of a single realization of a stochastic process, i t  is possible to determine the statistical 
property of the process for all realizations. Since in reality one always deals with a specific geologic formation 
(i.e., one realization) rather than an ensemble of such formations, one has no choice but to adopt the 
assumption of ergodicity as a working hypothesis for the stochastic approach. With this assumption in mind, 
the ensemble parameter, w, will be dropped from our notations in subsequent discussions for convenience. 

Because the stationarity is a very stringent assumption, and because in many cases important properties of 
a stochastic process can be assessed by moments, i.e. the mean (first moment) and covariance 
(second moment), an assumption of weak or second-order stationarity is often invoked. The first 
(mean) of K ( x )  is defined as: 

p = E [ K ]  = K f ( K ) d K  s: 
function 
moment 

(3) 

where E [ ]  stands for the expected value, i.e., the average over the entire ensemble, andffk) is the joint density 
distribution of K .  The covariance function is defined as: 

Second-order stationarity implies that the mean is a constant and the covariance function depends only on 
the separation distance, t. It is the distance that separates any two samples in the calculation of the 
covariance function. This assumption allows us to characterize the stochastic process by using only its mean 
and covariance function. If the separation distance is set to zero, the covariance function becomes the 
variance. If the separation distance is set to zero, the covariance function becomes the variance. An 
autocorrelation function is simply defined as the ratio of the covariance function to its variance, i.e., 

The autocorrelation function represents the persistence of the value of a property in space. 
Generally, the autocorrelation function value of the hydraulic conductivity data tends to drop rapidly as 

the separation distance increases. The decline of the correlation can be represented by many different 
autocorrelation models. The one commonly used is an exponential decay model (Bakr et al., 1978; Gelhar 
and Axness, 1983; Yeh et al., 1985a,b,c): 

where p is the autocorrelation function, 5 is the separation vector, and the integral scales (or correlation 
scales) in the x, y, and z directions are A,,  A 2 ,  and A 3 ,  respectively. The integral scale is defined as the area 
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under an autocorrelation function if the area is a positive and non-zero value (Lumley and Panofsky, 1964). 
For the exponential model, the integral scale is the separation distance at which the correlation drops to  the 
exp( - 1) level. At  this level, the correlation between data points is considered insignificant. That is, data 
points separated by distances larger than the correlation scale are only weakly associated with each other. 
Furthermore, if the correlation scales of a random field are the same in all the directions, the random field is 
said to be statistically isotropic. On the other hand, statistical anisotropy implies that the correlation scales of 
the random field are different in all the directions; that is, the variability of the field has a preference for 
certain directions. 

On an intuitive basis, the correlation scale may be interpreted as the average length of clay lenses or 
sedimentary structures (for example, cross-bedding, stratification, etc.). Hydraulic property values of samples 
taken within the clay lens tend to be similar; correlation between sample values is near unity. However, 
sample values are quite different if one sample is taken within the clay lens and the other outside the lens; the 
resulting correlation will be small. Thus, the autocorrelation function is a statistical measure of spatial 
stucture of hydrogeologic parameters. Table I presents a summary of correlation scales for hydraulic 
conductivity or transmissivity in a variety of geologic environments in which data were collected by methods 
ranging from cores to aquifer tests. 

Using the stochastic representation, spatial variability of hydrogeologic properties thus can be character- 
ized by the means and covariance functions of the properties. Notice that this approach does not provide 
information about the values of aquifer properties at any location in the aquifer but provides a way to 
quanitfy the spatial variability of the properties. That is, we only know where the mean value of the 
properties lies and how widely the property values spread around the mean value. 

Table I. Variances and correlation scales for log hydraulic conductivity or log 
transmissivity (Gelhar, 1986) 

Source Medium 
Correlation Overall 
scale, (m) scale, (m) “f 

Bakr (1976) 
Smith (1978) 
Delhomme (1979) 
Binsariti (1980) 
Russo and Bressler 

(1981) 
Luxmoore et a!. 

(1981) 
Sisson and Wierenga 

(1981) 
Viera et al. 

(1981) 
Devary and Doctor 

(1982) 
Byers and Stephens 

(1983) 
Hoeksema and 

Kitanidis (1985) 
Hufschmied (1985) 
Sudicky (1985) 

Sandstone aquifer 
Outwash sand 
Limestone aquifer 
Basin fill aquifer 
Hamra Red 
Mediterranean soil 
Weathered shale 

subsoil 
Silty clay loam 

soil (alluvial) 
Yo10 soil 

(alluvial fan) 
Alluvial aquifer 

(flood gravels) 
Fluvial sand 

Sandstone aquifer 

Sand and gravel 
Outwash sand 

1.5-2.2 
0.8 
2.3 
1 .o 

0.4- 1.1 

0.8 

0.6 

0.9 

0.8 

0.9 

0.6 

1.9 
0.6 

0.3- 1.0V 
0.4V 

6300H 
800H 
14-39H 

< 2H 

0.1H 

15H 

820H 

0.1v 
> 3H 

45000H 

0.5v 
0-1v 

100 
30 

3oooo 
2 m  

100 

14 

6 

100 

5000 

5 
14 

5 105 

20 
20 

Correlation scales based on e -  ’ correlation distance: H, horizontal sampling, V, 
vertical sampling. 
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STOCHASTIC MODELLING O F  FLOW AND SOLUTE TRANSPORT IN AQUIFERS 

Employing the stochastic conceptualization of field heterogeneity, many stochastic methods for solving 
groundwater problems have been developed in the past decade. Similar to the deterministic approach, the 
stochastic methods can also be implemented as effective parameter (equivalent homogeneous) or heteroge- 
neous approaches. 

Efective parameter approach 
The principle of this approach is identical to the equivalent homogeneity concept in the deterministic 

approach. As discussed in the deterministic approach, one of the major problems facing this approach is how 
to extrapolate small-scale measurements to large-scale effective parameters. Furthermore, since models 
based on the effective parameters predict the bulk behaviour of aquifers, the discrepancy between the bulk 
behaviour and the behaviour observed at scales much smaller the REV must be addressed. The stochastic 
perturbation-spectrum method to be discussed in the following paragraphs provides a means to resolve these 
problems although debate on the concept of the effective parameter continues (see Smith and Freeze, 1979; 
Anderson, 1989). 

The perturbation-spectrum analyis is an analytical approach which has been used extensively by Gelhar 
and his coworkers (e.g. Gelhar, 1976; Bakr et al., 1978; Gutjahr et al., 1978; Mizell et al., 1982; Gelhar et al., 
1979; and Gelhar and Axness, 1983; Yeh et al., 1985a, b, c; Mantoglou and Gelhar, 1987a, b, c). To illustrate 
the approach, let us consider steady-state flow in a heterogeneous but locally isotropic aquifer (i.e., the 
hydraulic conductivity at the scale of core samples is isotropic) with infinite lateral extent. The governing 
flow equation is: 

a axi [K(x) $1 = 0, i = 1,2,3 (7) 

where K is the isotropic hydraulic conductivity, and is a function of the spatial coordinates. The Einstein 
summation convention is used (i.e. repeated indices imply summing over the range of the indices). If K # 0, 
Equation 7 can be rewritten as: 

= o  d2h a l n  K ah +-- axiaxi dxi axi 

If the natural log of hydraulic conductivity, In K ,  and the hydraulic head, h, are assumed to be second-order 
stationary stochastic processes, Equation 8 becomes a stochastic partial differential equation. In K and h can 
be decomposed into means and fluctuations of these values about their means, i.e. 

h = H + h’, E[h]  = H ,  and E [ h ]  = 0. 
In K = F + f ,  ECln K ]  = F ,  and E [ f ]  = 0. 

(9) 

where H and F are the means of h and In K ,  and h and f are perturbations of h and In K ,  respectively. By 
substituting Equation 9 into Equation 8, and taking the expected value, we obtain a mean equation: 

Subtracting the mean Equation 10 from Equation 8 gives: 
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If we assume that the log hydraulic conductivity perturbation f is small (aquifer is not highly heteroge- 
neous), say, n; < 1.5 (Ababou et a]., 1988), it is logical to expect the head perturbation h will be small. Then, it 
is reasonable to neglect terms that involve products of perturbations so that the perturbation equation can be 
written as: 

X O  
d f  dH d F  dh' a'h' + ._~ + a x ,  ax, ax, ax,  ax lax ,  

This equation represents a first-order approximation of the relationship between the perturbations in 1nK 
and h' in a steady-state flow with mean gradients, 8 H / 8 x i .  

The above mathematical procedures are equivalent to visualizing the heterogeneous aquifer as a collection 
of finite elements, and flow in each element is described by the governing flow equation with a constant 
hydraulic conductivity value. A collection of an infinite number of elements whose hydraulic conductivities 
are spatially correlated is then equivalent to an ensemble in the stochastic sense. Taking the expected value 
(ensemble average) of Equation 8 with stochastic parameters is tantamount to homogenizing the heteroge- 
neous aquifer and to ignoring the details of the flow behaviour in each element but examining the average 
behaviour of the flow in all the interconnected elements. The perturbation equation thus depicts the 
deviation of the flow from the mean flow. 

Using the perturbation-spectrum technique and assuming statistical isotropy in In K ,  Bakr et al. (1978) 
solved Equation 12 to analyse the effects of spatial variability on steady-state groundwater flow. Closed 
forms of head variance expressions (a statistic measure of the deviation of the head value at a point from the 
mean head) were derived for one- and three-dimensional flow fields in which hydraulic conductivity is a 
spatially-varying stochastic process. Several important conclusions about the effects of spatial variability 
were drawn from the results of the study. Hydraulic head distribution tends to be smooth due to the damping 
effect of the groundwater system. That is, the head values are correlated over a much longer distance than the 
hydraulic conductivity values, and variance in head is generally small. Moreover, the head values are 
anisotropic (i.e. correlated over a longer distance in the direction perpendicular to the mean flow than the 
direction parallel to the flow.), even if the hydraulic conductivity field is statistically isotropic. The head 
variance can be related to the variance of In K by: 

where f i  is a constant having a value of 1 for one-dimensional flow, 1/3 for three-dimensional flow, J is the 
mean hydraulic gradient, n; is the variance of the natural logarithm of hydraulic conductivity, and A is the 
correlation scale. Equation 13 indicates that the variability in head will be small due to small J values in most 
aquifers (in the order of 10- or smaller.) In addition, the head variation predicted by a three-dimensional 
model is much smaller than that by a one-dimensional model. This means that a three-dimensional model 
would be much more appropriate for analysing flow and solute transport in field problems. It is also manifest 
from Equation 13 that the correlation scale is an important factor in the calculation of head variance or 
uncertainty in head prediction. 

Gutjahr et al. (1978) defined effective hydraulic conductivity for heterogeneous In K fields as the mean 
Darcy flux divided by the mean hydraulic gradient. They concluded that the effective hydraulic conductivity 
in one-dimensional flow, perpendicular to layering, is the harmonic mean 

K ,  = K ,  exp[ - a : / 2 ]  (14) 

where K ,  is the geometric mean of K ,  and the arithmetic mean for flow parallel to bedding, i.e.: 

K ,  = K ,  exp[a : /2 ]  
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In the three-dimensional flow situation, the effective hydraulic conductivity is given by Gelhar and Axness 
(1 983) as 

which is slightly greater than the geometric mean. They suggested that the geometric mean of K may be a 
good estimator for the effective hydraulic conductivity values for field situations. 

Gelhar and Axness (1983) investigated the effective hydraulic conductivity of large-scale aquifers in which 
the hydraulic conductivity field is assumed to be statistically anisotropic. They showed that the effective 
hydraulic conductivity, in general, is a second-rank symmetric tensor whose principal components depend 
on the ratios, A,/,?, and A1/A3. Figure 4 shows the dependence of the principal hydraulic conductivities for 
the case with A l  = I ,  # A3 on the degree of variability of log hydraulic conductivity as well as the geometry of 
the heterogeneity as characterized by the ratio of All&. 

These results provide a practical tool for predict flow and solute transport in large-scale aquifers. 
Hydrologic modellers always face the problem of insufficient data (for example, hydraulic conductivity 
measurements). As a first step towards solving such a problem, one may use these limited data to determine 
the variance of In K and correlation scales and thus, the effective hydraulic conductivity can be estimated by 
using Equations 14, 15, 16, depending on the dimensionality of the model, or by using Figure 4. 
Consequently, the mean flow behaviour can thus be estimated. In fact, a successful application of this 
approach to the mean flow path of tracers in a field experiment was reported by Sudicky (1986). If there are 
no hydraulic conductivity data available, one may still approximate the effective conductivity by using the 
variances and correlation scales of similar kinds of materials reported in the literature (see Table I). Once the 
mean flow is determined, the head variance can be evaluated and can then be used as a measure of the error in 
the effective parameter model as a result of unmodelled aquifer heterogeneity. Therefore, the head variance is 
an appropriate model calibration target for defining the detailed hydraulic conductivity distribution, 

I I 1 
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Figure 4. Effective hydraulic conductivities parallel ( K l l )  and perpendicular ( K 3 3 )  to bedding: the solid lines are the generalization (60) 
and the dashed lines are the first order results (59): 11 = 12 
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provided that other sources of error are also considered. The hydraulic conductivity field obtained from the 
calibration may, then, be used to approximate the movement of solutes in aquifers. Application of such an 
approach to field problems was illustrated in the paper by Gelhar (1986). 

A n  alternative approach is to use the estimated effective hydraulic conductivity to predict the migration of 
a contaminant plume resulting from the average flow. Since flow predicted based on the effective hydraulic 
conductivity ignores the fast orland slow moving solute particles due to subscale velocity variations which 
can cause the spread of the plume, the hydrodynamic dispersion concept must be employed. Generally 
speaking, the REV involved in this case is large. Thus, the dispersion due to the variation in hydraulic 
conductivity values at scales smaller than this REV is typically called macrodispersion and the dispersivity 
the macrodispersivity. To relate macrodispersivities to the spatial variability of hydraulic conductivity 
measurements. Gelhar and Axness (1983) derived mathematical expressions by the perturbation-spectrum 
technique. One of their results is 

A l l  = o:A/y2 (17) 

where A ,  is the longitudinal macrodispersivity at large time, 0; is the variance off, 1 is the correlation scale 
of the statistically isotropic porous medium, and y is the flow correlation factor which depends on the 
direction of the mean flow and the orientation of the heterogeneity. Equation 17 implies that the 
macrodispersivity values can be estimated from the knowledge of the variation of local-scale hydraulic 
conductivity values without conducting a large-scale field tracer experiment. Although conducting a large- 
scale field tracer experiment is most appropriate for determining solute movement in aquifers, it is 
impractical in terms of time and expense required for such an experiment. On the other hand, local-scale 
hydraulic conductivity values have commonly been measured in many aquifers. These data are generally not 
quite adequate for any detailed numerical simulations, but may be suitable for estimating the statistical 
parameters required for the macrodispersivity determination. Hence, the macrodispersivity approach is a 
practical tool for solving many groundwater pollution problems without resorting to extensive site 
characterization. 

I t  should be pointed out that the macrodispersivity is also an effective parameter (i.e. an ensemble averaged 
parameter). 1 t represents the subscale velocity variation averaged over many possible aquifers of similar 
heterogeneity, or the variation averaged over many parts of an aquifer. Thus, the macrodispersivity approach 
produces the mean concentration distribution only. However, the actual concentration distribution observed 
in an aquifer may be quite different from the mean. For example, Figure 5 shows the differences between an 
observed concentration distribution in the Borden sandy aquifer and a mean concentration distribution 
calculated from the classic convection - dispersion equation with macrodispersivity values. A measure of the 
difference between the two distributions (concentration variance) becomes necessary. Vomvoris and Gelhar 
(1990) developed an expression for the concentration variance and found that the concentration variance is 
proportional to the mean concentration gradient and to the variance and correlation scales of log-hydraulic 
conductivity; it is inversely proportional to local dispersivity values. They concluded that the concentration 
variance could be large, depending on the magnitude of the parameters. Since Equation 17 is valid only for 
large times, or after the plume has been displaced for a large distance, when the mean concentration gradient 
is small, the macrodispersion approach will produce satisfactory results. 

Similar research on macrodispersion has been presented by many other researchers (e.g. Dagan, 1984, 
1986, 1987). Dagan (1987) derived the spatial statistics of the Eulerian velocity field in heterogeneous 
aquifers, converted the velocity statistics to the Lagrangian displacement variances, and derived analytical 
expressions for the time-dependent macrodispersivities in two-dimensional planes and three-dimensional 
aquifers. His approach is based on Taylor’s theorem of diffusion (1922) but in Dagan’s analysis the spatial 
statistics of the velocity field are related to the heterogeneity structure of the hydraulic conductivity field 
through the governing groundwater flow equation. If the hydraulic conductivity field is considered to be 
statistically isotropic, for early time periods (i.e. t < < 1/o), the spatial displacement variances are given by: 

8 
15 

o:,(t) = ~ o:u2t2 + 2DLt 
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Figure 5. Schematic illustration of an observed depth-averaged concentration profile (solid) and a mean profile (dash), calculated from 

the macrodispersion equation (modified from Sudicky, 1986) 

and 

for three-dimensional flow, where aIz, and c& are the displacement variances in the direction of flow, 
and in lateral directions, respectively. Local-scale dispersion coefficients in the longitudinal and the 
transverse directions are D,  and D,, respectively, u is the mean velocity, E is time, and 1 is the correlation scale 
of the hydraulic conductivity field. The parameter a,’ represents the variance of the natural log hydraulic 
conductivity in three-dimensional flow and the variance of the natural log of transmissivity in two- 
dimensional flow. The results of the two-dimensional flow analysis are: 

For large time periods (i.e. t > > A/u), the three-dimensional results are: 

a:l(t) z 2a;ulZt + 2D,t 

a$*(t) = a:,(t) Fz - o;lZ2t 
2 
3 
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and the two-dimensional results. 

a f 2 ( t )  % aiA2[ln(ut/A) - 0.9331 (25) 

Note that the displacement variance is the spatial variance of a tracer plume, representing the size of the 
plume at a relative concentration equal to the exp(-I) level if the plume is assumed to have a normal 
distribution. Macrodispersion coefficients can be determined by taking the time derivative of the displace- 
ment variances. Since the spatial displacement variances (Equations 18 to 21) for early time periods depend 
on t 2 ,  the macrodispersion coefficient grows with time or mean travel distance (this is the sd called 
scale-dependent dispersion). For late time periods, the concentration variances (Equations 22,23,24 and 25) 
are a function of t only, and the macrodispersion coefficients or macrodispersivities are constant over time. 
Note that Equations 18 25 evaluate the spatial displacement variance (or the second moment of a plume) 
and do not predict the shape of the concentration plume but its ‘size’ (Yeh, 1987). Thus, the classic 
convection-dispersion equation, which assumes the validity of Fick’s law, is avoided. Similar expressions for 
the displacement variances in statistically anisotropic media were reported by Dagan (1988), Neuman and 
Zhang (1990), and Zhang and Neuman (1990). 

In  general, these results seem to compare favourably with those obtained from a field tracer experiment 
(Freyberg, 1986; Sudicky, 1986) conducted in a sand aquifer in Canada (see Figure 6). Analysis of a recent 
field tracer experiment by Garabedian et al. (1991) in a glacial outwash aquifer also indicated that the 
stochastic results (i.e. Gelhar and Axness, 1983; Dagan, 1987) are robust, regardless of many assumptions 
used in the development. However, such a statement may be premature at  this time since many disputes on 
the use of Dagan’s two-dimensional model for the Borden site continue (see Kemblowski, 1988; and White, 
1988). Moreover, Naff et al. (1988) developed a three-dimensional macrodispersion model for perfectly 
stratified aquifers and attempted to reproduce the field experimental results at  the site. However, they found 
that the three-dimensional model, which is more realistic than the two-dimensional model developed by 
Dagan (1987), does not reproduce the tracer concentration distribution as well as the two-dimensional 
model. Naff et al. (1989) attributed the discrepancy to temporal variation in flow patterns which is not 
considered in all the stochastic models. Daga (1989) defended the two-dimensional approach with the 
conjecture that there exists a clay lens of large lateral extent, prohibiting vertical spreading of the tracer 
plume. This conjecture, however, has not been verified. Clearly, the robustness of the macrodispersion 
approach still remains to be tested. 

Overall, the major advantage of the analytical approaches by Gelhar and Axness (1983), Dagan (1987), 
and others is that they provide an explicit expression relating the variability of local hydraulic conductivity 
measurements to the macrodispersivity and the spatial variance of the mean concentration distribution. 
Thus, one can estimate the effective hydraulic conductivity and the macrodispersivity values of large-scale 
aquifers if the statistical parameters characterizing the variability of the small-scale hydraulic conductivity 
values are known. The major drawback of the method is that the solution (or the formula) may be valid only 
for small values of variations in  hydraulic conductivity because of the omission of perturbation product 
terms in the analysis. Several studies have shown the results to be valid for the variance o f f =  1 (Gelhar, 
1986). For cases where a large variance in f is expected (such as in fracture rocks where in one case the 
variance of In K has been reported to be about 8.7, (Neuman, 1987)), the accuracy of the perturbation- 
spectrum approach seems doubtful. One should also keep in mind that the macrodispersion model predicts 
the mean (or ensemble averaged) concentration distribution. Even if the macrodispersion model is valid for 
large variance off or other parameters, the actual distribution may be significantly different from the mean 
concentration distribution. Thus, the usefulness of the macrodispersivity approach is limited. 

Further, the perturbation-spectrum approach assumes stationarity. In a basin-scale aquifer, the hydraulic 
conductivity field is likely to be non-stationary because of changes in depositional environments which may 
contain heterogeneities of a variety of scales (e.g. Gelhar, 1986; Anderson, 1989). How to  incorporate such a 
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Figure 6. A comparison of observed (dots) and theoretical (line) spatial concentration variance in the longitudinal and transverse 
directions (Dagan, 1987) 

feature in the approach remains to be explored. Finally, the validity of using the classic convection-disper- 
sion equation for predicting solute concentration distribution in a large-scale aquifer is still under debate (e.g. 
Gelhar et a/., 1979; Yeh, 1987, and others), even if macrodispersivities can be determined. 

Heterogeneous approach 
Several methods including geostatistics, Monte Carlo simulations, and conditional simulations can be 

considered as the heterogeneous approach in the stochastic modelling of flow and solute transport in 
aquifers. 

Geostatistics. To illustrate the theory and utility of geostatistics in predicting flow and solute transport in 
groundwater systems, we will consider one of the common problems facing groundwater modellers when 
dealing with simulations of flow and solute transport in field problems: how to estimate the value of an 
aquifer property at locations where there are no data available. For example, if one assumes that local-scale 
dispersion is negligible, and movements of solutes are mainly controlled by the major flow pattern, one may 
attempt to use a two-dimensional, depth-average, finite difference, groundwater flow and solute transport 
model (say, a particle tracking model) to simulate solute movements in a groundwater basin. For accuracy or 
other reasons, one may design a 2000-node mesh for the entire basin. However, only 50 measured 
transmissivity values scattered around the entire basin may be available. To assign transmissivity values 
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objectively to the remaining nodes, one may have to resort to use of mathematical tools. Geostatistics is one 
of the possible tools, Geostatistics is a statistical method used to estimate or interpolate the parameter values 
at points in space where no samples are available. The technique has been widely used for decades in the 
mining industry to estimate ore grades (Journell and Huijbregts, 1978). Recently, this technique has been 
applied to groundwater hydrology to address spatial variability problems. In principle, geostatistics concepts 
are similar to stochastic concepts. They both are used to analyse variables distributed in space. However, 
some of the terminology is different. For example, the term ‘random function’ is used in geostatistics to define 
a collection of correlated random variables. That is, at a point x l ,  the function F(x,) is a random variable 
and the random variables at x1 and x1 + 5 are not independent but correlated. According to this definition, it 
is clear that the random function is equivalent to the stochastic process defined earlier. Similarly, a 
‘regionalized variable’ is used in geostatistics to define a functionflx) which takes a value at every point x of 
coordinates (x l ,  x2, xg) in three-dimensional space (Journel and Huijbregts, 1978). In other words, a 
regionalized variable is simply a particular realization of a certain random function of stochastic process. 

Two important parts of geostatistics are (1) identification of the spatial structure of the variable 
(variogram estimation, trend estimation, etc.) and (2) interpolation or estimation of the value of a spatially 
distributed variable from neighbouring values taking into account the spatial structure of the variable 
(kriging, co-kriging, etc., de Marsily, 1986). 

Like the autocorrelation function described previously, the variogram is simply a way of defining the 
spatial structure of a random field. Variogram analysis is based on the intrinsic hypothesis which is less 
stringent than the second-order stationarity assumption. Recall that second-order stationarity requires that 
the data have a constant mean and that the covariance function depends on the separation distance only. 
However, the intrinsic hypothesis requires only that the mean of the differences between two data points is 
constant or depends on the separation distance, <, and the variance of the difference depends on the 
separation distance. For example, if we consider the hydraulic conductivity, K(x), as a random field, under 
the intrinsic hypothesis, it must satisfy the following two conditions: 

where rn and y are mean and variogram, respectively, and are functions of t, and not of x. Figure 7 shows the 
general behaviour of a variogram. As indicated in the figure, when the variance of the variable is finite, the 
variogram tends towards an asymptotic value equal to this variance, oar[K(x)]. This is called the sill of the 

SEPARATION DISTANCE 

Figure 7. General behaviour of a variogram 
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variogram, and the distance at which the variogram reaches its asymptotic value is called the range, 1. The 
range is analogous to the correlation scale discussed earlier: beyond the range, the regionalized variables 
K ( x )  and K ( x  + 5 )  are no longer correlated. In fact, the variogram is a mirror image of the covariance 
function if the data represent a second-order stationary process. 

The other principal tool of geostatistics is kriging, which is an estimation technique. To illustrate the 
principle behind kriging, let us suppose that we are studying the transmissivity distribution in an aquifer, 
T ( x ) ,  and having measurements of its values at a number of locations, x l ,  x 2 ,  . . . , x, ,  we wish to predict its 
value at the location xo. Intuitively, we would use the transmissivity values measured at sample locations xl, 
x2, . . . , x,, in predicting the unknown transmissivity value T(x,). In fact, this is, at  least conceptually, 
identical to the way a contour map of transmissivity is manually drawn by geohydrologists. If we express this 
concept in a mathematical formula, we would write 

where T ( x o )  represents the transmissivity estimate. In other words, the unknown T ( x o )  is a function of the 
known transmissivity values. The question now is how do we choose the function F? To answer this we must 
first decide on the ‘criterion’ which we will use to measure the accuracy of T(xo) as a predictor of T(xo) .  The 
simplest and most widely used measure of accuracy is the ‘mean square error’ (MSE), 

If we adopt this as our criterion, then the problem is to find that form of F which minimizes the MSE. If we do 
not restrict the form of F in any way, then the solution is the conditional expectation of T(x,),  given T ( x , ) ,  
T ( x Z )  ... , T(x,),  i.e. 

The intuitive interpretation of the conditional expectation, as explained by Priestley (1981), may be seen as 
follows. Suppose we consider all the possible realizations of the process T(x) .  Within this ensemble, we would 
expect that there must be a subset of all the realizations which consists of the values of T’s at our sample 
locations, x , ,  x 2 , .  . . X ,  (Figure 8). The condition imposed on the expectation simply means that we will only 
consider this subset and discard the realizations which do not agree with the measured T values at  xl, 
x 2 , .  . . , x ,  when we take the expectation. Since the subset will have different values for T a t  the unsampled 
location, x o ,  the way to make our ‘best’ prediction of the value at xo is to take the expected value or the 
average of the different values of T in the subset a t  location xo. The average value of T at xo over this subset 
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Figure 8. Schematic illustration of the conditional expectation concept 
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is precisely what we mean when we refer to the conditional expectation of T(x,), givenT(x,), 

However, the conditional expectation requires the joint distribution of T(x,), T(x,), . . . , T(x,), which we 
hardly ever know. The nearest we can approach this problem is to argue that in many cases we would expect 
such joint distributions to be approximately multivariate normal. If the joint distributions were normal, then 
the conditional expectation is a linear function of T(x,), T(x,) ,  . . . , T(x,) in which case we can write the 
predictor of T(x,) more explicitly as 

T ( x , ) ,  . . ., T(.x,). 

where sol, a,,,. . . , a,, are constants; a,, denotes the weight associated with the measurement at the location 
x, and the estimate at location x,, and so on up to a,”. The remaining step is to determine the values of the 
coefficients, sol, uoz,  . . . , a,,, which minimize the MSE. Since the MSE is a quadratic function of the T(x), 
the values of these coefficients may be determined from a knowledge only of the autocovariance function (or 
variogram in the case of intrinsic random fields) of the process. Of course, we can decide to consider only 
linear predictors, even if the process is not multivariate normal. The argument being that if the process is 
jointly normal then the linear predictor is optimal, whereas if the process is not jointly normal then, in 
general, we would be unable to evaluate the conditional expectation and so we might as well seek the best 
linear predictor. 

Now, we will briefly examine the theory of kriging. The most general form of kriging is termed ‘Universal 
Kriging,’ in which the values of points in space may be estimated from irregularly distributed samples in the 
presence of trends (or non-stationarity). If the data set is stationary, a less involved operation can be used to 
estimate the values of the points. This technique is referred to simply as ‘Ordinary Kriging’ or ‘Kriging’ (see 
Journel and Huijbregts, 1978). 

Again, we will use the estimation of transmissivity values at unsampled locations in between test wells as 
an example. To find the transmissivity estimate T(x,) of the unknown quantity T(x,), kriging uses a 
weighted linear sum of all the available sample values (measured transmissivity values): 

where the a,, are called the kriging weights, and T(xi) are sample values. In order to limit the choice of the 
kriging weights, we will impose two conditions. The first condition is that the expected value of the estimate 
of T ( x , )  should be the same as the expected value of T(x,), i.e., 

This condition implies that the kriging estimator has to be unbiased. It then follows that in the constant mean 
case the sum of the weighting factors must be unity. 

The second condition is that the error of estimation should be minimal: 

E [ ( T ( x , )  - T(xo))2] = minimum 

This latter condition, along with ( 1  1 )  leads to a system of equations of the form: 

t 34) 

(35) c aojY(xi - X j )  + E = y(xi - x,) 
j= 1 
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where y(xi  - x i )  represents the variogram corresponding to a separation distance, t, equal to the distance 
between points xi  and x j .  Similarly, y(xi - x , )  represents the variogram over a distance equal to that beween 
the point x, to be estimated and the point x j .  E is a Lagrange multiplier. Combining the constraint that the 
kriging weights must sum to one, the system of equations can be solved to obtain optimal aOi values which 
can then be input to Equation 31 to obtain the estimate of T ( x , ) .  The estimator, T(x, ) ,  is a linear 
combination of the n data values. The n weights a,, are calculated to ensure that the estimator is unbiased 
and that the estimation variance is minimal. Thus, kriging is a best linear unbiased estimator (BLUE). If the 
random field is multivariate normal, then kriging is equivalent to the conditional expectation which is an 
optimal estimator (in the mean square error sense). 

The kriged estimate T ( x , )  is based on samples located a distance away from the estimated point. The 
values at these distant points are only partially related to the value at the kriged point, the degree of 
relationship being expressed by the variogram. Therefore, we do not expect our estimate, T ( x , ) ,  to be exact. 
This point should be clear if we reexamine the conditional expectation discussed previously. That is, in the 
case where the T is a multivariate normal random process, the estimate, T(x , ) ,  is simply the average of T 
valuesat the location x o  from a subset of T ( x )  which agree with the sample values at the sample locations. 
The spread of all the T values at x, around the average is then determined by the kriging variance, o$, which 
is 

Notice that the variance is not a measure of the deviation of the estimate from the true T value at x,. 
However, the smaller the variance, the greater the reliability of the estimate T(x,). Conversely, an estimate 
with a large associated variance must be utilized with caution. In practice, the kriging variance can be used to 
determine the optimal location for additional field tests. For example, hypothetical locations can be added to 
the actual data base to calculate the reduction in the kriging variance. Thus, kriging is considered as a 
valuable tool in quantifying uncertainty in interpolated data and in assessing the value of additional data 
during any site characterization. 

Kriging is different from other interpolation or extrapolation techniques because it considers the spatial 
structure (variogram) of the variable. It also provides a measure of the probable error associated with 
estimates of the unknown values. However, for many cases, kriging may have no advantages over polynomial 
trend surface and may even perform poorly by comparison (Davis, 1973). Unlike some regression models 
that fit a surface to the data base, kriging preserves the values at  points of measurement. Note that the model 
and objectives behind polynomial or surface fitting differ from those in kriging. For that reason a comparison 
between the methods may not be appropriate. In trend surfaces the objective is to fit the mean value, while in 
kriging reconstructing the actual surface is the goal. In this sense kriging includes a kind of conditioning 
without using the normality assumption. 

Kriging provides estimates of aquifer properties at points in space. In a numerical model the aquifer is 
discretized into grids, within which hydraulic properties are assumed to be uniform. However, measurements 
of transmissivity or hydraulic conductivity, for example, typically represent a much smaller scale than the 
grid blocks of the model. In contrast to ordinary kriging, block kriging can be used to obtain average 
properties for the grid block (de Marsily, 1986). That is, the spatial correlation structure obtained from local 
measurements can be used to interpolate on a point or a real basis. De Marsily er a!. (1984) described a 
method that combines kriging and numerical simulation to identify hydraulic characteristics of a reservoir 
from aquifer tests. The approach allows one to utilize a variety of available hydrogeologic information at 
different scales. Kriging was also used by Devary and Doctor (1982) to estimate uncertainties in pore velocity 
at the Hanford site from estimated fields of hydraulic conductivity, effective porosity, and hydraulic 
conductivity. A similar approach to estimating pore velocity was described by Neuman (1984). 

In most field problems, groundwater hydrologists are likely to have both transmissivity and hydraulic 
head, or specific capacity data. Hydraulic head and specific capacity are generally correlated with 
transmissivity. It may be desirable to estimate transmissivity values at unsampled locations, using both 
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measured transmissivity and hydraulic head values or specific capacity data, instead of using transmissivity 
only. This type of technique using the kriging concept is called co-kriging. Detailed discussion on this subject 
is available in de Marsily (1986), and Kitanidis and Vomvoris (1983). Neuman (1984), Williams (1987), and 
Hoeksema and Kitanidis (1984) applied this approach to groundwater flow simulations. 

Monte Carlo simulation 
The most intuitive approach to dealing with spatial variability in a stochastic sense is Monte Carlo 

simulation. Although it is classified as one of the heterogeneous approaches in the sense that the hydraulic 
property values at every point in the aquifer are specified, it is, in principle, equivalent to the effective 
parameter approach based on the stochastic concept. They both derive the mean and variance of the head 
and/or concentration, but Monte Carlo simulation provides numerical results and requires fewer assump- 
tions than the stochastic effective parameter approach. The principle of the method is straightforward; it 
assumes that the probability distribution of the parameter (for example, hydraulic conductivity) and its 
covariance function are available from measured field data. However, the probability distribution and 
covariance function do not provide information about the parameter value at a particular point in space. In 
order to obtain the spatial distribution of the parameter values, many possible realizations of hydraulic 
conductivity values that conform to the assumed probability distribution and the covariance function are 
then generated by using a pseudo-random number generator with special techniques (Gutjahr, 1989; Smith 
and Freeze, 1979; Mantoglou and Wilson, 1982). Each realization of the parameter values is subsequently 
input to flow and transport equations which are then solved by standard numerical or analytical methods. In 
most cases, numerical methods are used. Thus, a solution is obtained for each realization of the input 
parameters. If there are N realizations of input parameters used, then N realizations of output are obtained 
from solving the governing equations. It is then possible to analyse the output for each realization to obtain 
the expected value, variance, covariance, and distribution of the output. The principle is illustrated in Figure 
9. 

This method has been used by many researchers to investigate effects of heterogeneity on flow and solute 
transport in groundwater systems. For example, it was applied by Clifton et aE. (1985) to analyse the 
uncertainty in predicting groundwater travel times and paths. Smith and Schwartz (1980, 1981a, b) used 
Monte Carlo simulation to determine uncertainties in solute transport predictions. Ababou et al. (1988) and 
Tompson and Gelhar (1990) conducted three-dimensional Monte Carlo simulations of flow and solute 
transport in heterogeneous geologic formations. 

Although the Monte Carlo simulation is not restricted to small variances of input parameters and 
stationary assumptions, there are difficulties associated with the simulation method. First, a large number of 
realizations is necessary in order to obtain meaningful statistics from the output. This implies that extensive 
computer CPU time is required. Second, a groundwater basin must be discretized into many elements or 
blocks in numerical simulations. Using a direct numerical solver (such as Gaussian elimination) to solve such 
a large system of equations in numerical models is generally not feasible because of memory storage 
limitations of computers. Often, the solution technique has to rely on interative methods (such as ADI, SIP, 
SOR, or PCG). Iterative techniques may reduce the memory storage problems but may not result in the 
convergence of the solutions to the true ones for highly variable input parameter values. In variably saturated 
flow situations or other highly non-linear flow and transport systems, the governing equation must be solved 
by iterative methods, and one is often unable to obtain a solution even for homogeneous properties. The 
difficulties in obtaining solutions for flow and transport in such non-linear systems with stochastic 
parameters are tremendous. In addition to these grave difficulties, one major drawback of the approach is 
that no clear relationship between the statistics of input parameters and output parameters can be easily 
derived. 

Conditional simulation 
Generally speaking, hydraulic data for an aquifer are limited. To best utilize the data, conditional 

simulation is more appropriate than the standard Monte Carlo simulation. Conditional simulation is a 
special kind of Monte Carlo simulation technique. Unlike standard Monte Carlo simulation, it imposes 
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Figure 9. Schematic illustration of Monte Carlo simulation concept 

sample values at the sample points. That is, in each realization, parameter values are kept constant and equal 
to the measured values at observation locations. Thus, there will be no uncertainty in the parameter values at  
measurement points, other than measurement errors. Consequently, we essentially eliminate many possible 
realizations of the hydraulic parameter value which do not agree with data at  sample locations. As a result, 
we expect that the variance of output from the conditional simulation should be smaller than that from the 
Monte Carlo simulation. This concept is similar to the conditional expectation and kriging technique. The 
complete theory of a conditional simulation procedure based on kriging is given by Matheron (1973) and 
Journel and Huijbregts (1978). A schematic illustration of the conditional simulation concept is shown in 
Figure 10. Briefly, the procedures of the conditional simulation are: (1) to generate non-conditional 
simulations, that is, to synthesize different realizations of the random field of hydraulic properties which 
maintain the actual covariance function that has been inferred from the data, and (2) to condition the 
simulations obtained in the first step by making the realizations consistent with the measured sample values. 
The first step is identical to the standard Monte Carlo simulation. For the second step, one can employ 
kriging. From the actual sample values, kriging yields a transmissivity estimate, T(x), at the unsampled 
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Figure 10. Schematic illustration of the conditional simulation 

location which is simply the average of all possible values at  a point x of the conditioned subset (Figure 10). 
The true value, T(x),  however, equals the estimate plus the error in the estimate, [Tx) - T(x)]. That is, 

T ( x )  = T ( x )  + [ T ( x )  - T ( x ) ]  (37) 

Since the kriging error [ T ( x )  - T ( x ) ]  is unknown we can not evaluate this expression exactly. However, we 
may approximate it by the use of kriging and non-conditional simulation. In other words, in a given non- 
conditional simulation (one realization), kriging can be performed using the measured values at the actual 
sample locations as data to derive the kriging estimate, $(Figure lob). The transmissivity value of the given 
non-conditional simulation S(x) thus can be decomposed as the sum of the kriging estimate S(x) and the 
kriging error, i.e., 

S(X) = s+ [S(x) - qx) ]  (38) 
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Since this value is derived from the non-conditional simulation, all terms are known. Note that [ S ( x )  - 
S(x) ]  = 0 at the sample locations. By substituting [ S ( x )  - s ( x ) ]  for [ T ( x )  - T(x)] in (37), the T , ( x )  for the 
conditional simulation is thus defined as: 

T,(x)  = T ( x )  + [S(X) - S(x) ]  (39) 

Therefore, T , ( x )  is consistent with the measured values at the sample points; T , ( x )  and T ( x )  have the same 
covariance functions. At unsampled locations, [ S ( x )  - S(x)]  does not equal zero and is different among 
realizations (or non-conditional simulation). Thus, conditional simulations create a conditioned subset of the 
ensemble, which agrees the measured value at sample locations. The average of many conditional simulations 
at a given point x is the kriging estimate, and its variance is the kriging variance. Generally speaking, 
hydraulic property fields resulting from conditional simulation are (1) smoother than unconditioned fields 
because they are conditioned subsets of the ensemble, but (2) more variable than kriged fields which 
essentially represent the conditional expected values (or average). 

Although conditional simulation is subject to the same difficulties as those in the Monte Carlo simulation, 
it incorporates the data value at sample locations and is generally regarded as a more realistic approach. 
Applications of such conditional simulations using conductivity measurements to groundwater flow and 
solute transport problems by Delhomme (1979) and Smith and Schwartz (1981a, b) found that such 
conditioning does not reduce uncertainty significantly even when measurements are spaced as close as two 
log hydraulic conductivity correlation lengths. 

A more elaborate conditional approach for simulating solute transport was employed by Wagner and 
Gorelick (1989). The approach was based on the inverse method developed by Kitanidis and Vomvoris 
(1983) and Hoeksema and Kitanidis (1985) which involves estimating the average, yet spatially variable, 
hydraulic conductivity field using both hydraulic conductivity and head measurements. Then, conditional 
realizations with the same degree of variability as the observed hydraulic conductivity fields are generated 
and used as input to a solute transport model to obtain solute distributions. The advantage of this type of 
conditional simulation is that the conductivity field is closer to the reality due to additional head 
measurements. 

Graham and McLaughlin (1989) presented a novel approach to conditional simulation. Instead of 
computing the mean and variance of the concentration distribution from many simulations with conditioned 
random parameter fields as input, the mean and the covariance of the concentration distribution are solved 
directly from approximated moment propagation equations with a numerical method. The Kalman filter is 
used to update the moments when new measurements of the head, log conductivity, and concentration fields 
become available. Through two synthetic problems, the authors demonstrate that reasonably good estimates 
of the solute concentration distributions can be obtained by conditioning the ensemble moments on a small 
number of measurements located in regions of high concentration uncertainty. 

Although the methodology is appealing, it requires concentration measurements which generally are not 
available at many proposed landfill sites. It is an attractive method for delineating existing plumes but it does 
not serve as a good predictive tool. In the case that concentration measurements are not available, their 
approach should yield results similar to those by the classical conditional simulation method using 
conductivity and head measurements. Furthermore, their moment propagation equations are first-order 
approximations which imply that the method is also limited to relatively homogeneous aquifers. From the 
computational efficiency point of view, the method may be inferior to the classical Monte Carlo and 
conditional simulations for a fully three-dimensional analysis due to the cumbersomeness of the Kalman 
filter. Regardless of these drawbacks, their methodology may provide a valuable tool for developing a 
sampling strategy to reduce uncertainties in characterizing existing contaminant plumes. 

SUMMARY AND CONCLUSION 

Predicting solute transport in a large-scale aquifer based on the current monitoring and modelling 
techniques is a difficult task. There are large uncertainties in predictions. These uncertainties arise mainly 
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from our inability to depict detailed spatial distributions of hydrologic parameters in large-scale aquifers. 
Although geological information is useful for defining large structures, some means of acquiring more 
detailed knowledge of the parameter distributions is necessary to improve our predictive capability. 
However, such techniques may not exist in the foreseeable future unless there are some technological 
breakthroughs in field testing. Until then, we may have to rely on stochastic approaches to obtain 
probabilistic results. Many of these approaches are available including the geostatistics method, the effective 
parameter approach, the Monte Carlo approach, and the conditional simulation. Each of these methods has 
limitations. Nevertheless, these approaches may at least provide us with some estimates of uncertainties in 
the predictions which may be crucial for regulatory and decision-making purposes. One should, however, 
beat in mind that the uncertainty estimates afforded by the stochastic models are themselves uncertain (e.g. 
Smith and Freeze, 1979; de Marsily, 1986.) 

The approach using effective parameters with the macrodispersion concept may be attractive for relatively 
simple hydrogeologic systems. Recent field experiments (Sudicky, 1986; Freyberg, 1986; Garabedian et al., 
1991) show that mean travel times and paths of plumes in sandy and glacial outwash aquifers can be 
adequately predicted by the effective hydraulic conductivity formula developed by Gelhar and Axness (1983). 
The spatial displacement variances of the observed plumes are also in reasonable agreement with the 
stochastic results by Dagan (1987) and Naff et d. (1988). 

However, the major technical concern with this effective parameter approach is its validity in the analysis 
of flow and solute transport in highly heterogeneous aquifers when the variance of the log saturated 
hydraulic conductivity is large. The omission of higher order terms in the perturbation-spectrum analysis 
may introduce large errors. On the other hand, in relatively homogeneous aquifers the existing analytical 
solutions to stochastic differential equations are only useful for simple flow fields, e.g. steady, uniform flow in 
an aquifer. Although the transient effect (Gomez-Hernandez and Gorelick, 1989) may be dissipated at large 
times after the stress moves through many parts of the heterogeneous aquifer, the stress may encounter 
heterogeneities of different scales. 

Whereas the spatial displacement variance formulas in the stochastic results (Equations 18 to 25) provide a 
way to predict the relative size of the plume, the shape of the concentration distribution still remains 
unknown. That is, the macrodispersivity derived from the stochastic analysis does not warrant the use of the 
classical convection-dispersion equation based on Fick’s law to predict the mean concentration distribution 
of a plume. In addition, the number of samples required to obtain accurate estimates of the parameters (such 
as correlation scales and covariance functions) for the macrodispersion models still needs to be investigated. 

Nevertheless, one should look at the bright side of the approach and recognize the essence of any 
stochastic theory: a stochastic predictor will do better than others on the average in many trials under 
uncertainties. The effective parameter approach may, thus, serve as a practical tool for preliminary analyses 
( e g  Gelhar, 1986), especially for cases where little information on aquifer properties is available. 

Finally, one should bear in mind that the discrepancy between the mean concentration distribution 
derived from the effective approach and the one observed in reality increases with the degree of heterogeneity, 
even if the effective approach is technically flawless. Then, key questions we should ask ourselves are: are we 
interested in predicting the mean concentration distribution in highly heterogeneous aquifers, such as alluvial 
and fractured aquifers? Can we accept predictions with large degrees of uncertainties, say more than 50 per 
cent? In other words, under what degree of heterogeneity can the effective parameter approach be used to 
make predictions that provide us with an acceptable degree of uncertainty? The formula for the 
concentration variance estimate developed by Vomvoris and Gelhar (1990) may furnish a quick answer to 
this question. Indeed, this is the major advantage of the stochastic effective parameter approach. 

Although the Monte Carlo simulation techniques may be superior to the stochastic effective parameter 
approach for predicting concentration distributions in aquifers since it involves fewer assumptions, it suffers 
the same difficulty as the effective approach. It also only produces means and variances of all the possible 
concentration distributions. Again, we are facing the same question as in the effective parameter approach. 
Do we need to conduct the Monte Carlo simulation if the aquifer is highly heterogeneous? Unfortunately, 
one has to conduct many tedious and time consuming simulations in order to answer this question if the 
effective parameter approach is not used. 
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Conditional simulations, which use available information at  sample locations and eliminate many possible 
realizations which disagree with observations, will enhance our ability to model reality. Although the results 
of conditional simulations by Delhomme (1979) indicated that using the known transmissivity values at 
sample locations may not reduce the uncertainties in the prediction of groundwater heads significantly, using 
both head information and transmissivity values as constraints for the simulation may be useful. In addition, 
the results of the conditional simulations by Smith and Schwartz (1981b) showed that locations of sample 
data used in the conditional simulation may have important impacts on the reduction of uncertainties. The 
effects of sample locations and conditioning the simulations by hydraulic conductivity, hydraulic head, and 
porosity values on predicting solute transport in aquifers certainly deserves further investigation. Regardless 
of the amount of uncertainty that conditional simulations (using concentration, conductivity, and head 
values) can reduce, it is rational to include all the available parameter values in the prediction. It is clear that 
the uncertainty in the simulation will be gradually reduced as more and more data become available. Thus, 
the conditional simulation approach seems to be a promising mathematical tool that can bring us a step 
closer to reality. 

As one approach to the problem of quantifying uncertainty in solute transport in porous media using 
stochastic methods, I suggest the following steps (1) groundwater hydrologists should utilize the principles of 
stratigraphy, sedimentology, and structural geology to delineate large-scale geologic units or structures 
which may contain the likely paths along which groundwater travels (Williams, 1988; Anderson, 1989). (2) 
‘Enough’ data should be collected to characterize the hydrologic properties of as many geologic units as 
possible so that the general flow regime in those units can be defined. (3) An ‘intensive’ sampling program 
should be carried out to collect hydraulic conductivity, dispersivity, and porosity data from the geological 
units identified in step (1) using many small-scale tests (such as core samples from boreholes, or small-scale 
aquifer and tracer tests). (4) Groundwater hydrology modellers should characterize the spatial variability of 
the hydrologic parameters in the likely fast flow units by the stochastic concept (i.e., statistical distributions, 
spatial covariance functions, etc.). ( 5 )  With the calculated statistics for the hydrological parameters, one 
should use the effective parameter approaches (such as Gelhar and Axness, 1983; and Dagan, 1987) for a 
preliminary analysis to define the mean behaviour of the flow system or to calibrate flow models (see the 
example in Gelhar, 1986). It is important that the scale of samples be consistent. That is, if one decides to 
model the system at a certain scale, the entire field characterization program should use that scale. In this 
way, the results of the model calibration will provide a better estimate of the statistical parameters required 
for conditional simulations. (6) To complement the effective parameter approach, the inverse procedure 
developed by Kitanidis and Vomvoris (1983), and Hoeksema and Kitanidis (1984) which uses both hydraulic 
conductivity and head data to estimate the spatial covariance function of the hydraulic conductivity field 
should be used. The results of the inverse procedure will provide the proper input parameter values for the 
conditional simulation (7) Finally, with the available statistical parameters obtained from either the effective 
parameter approach or the inverse procedure, one should carry out conditional simulations using solute 
transport equations to determine the uncertainty in predicted solute concentration distributions. The same 
procedures should be repeated as additional data become available. Such an iterative conditional simulation 
will bring our predictions closer to reality. 
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