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Sensitivity and moment analyses of head in

variably saturated regimes
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A numerical approach for approximating statistical moments of hydraulic heads of
variably saturated flows in multi-dimensional porous media is developed. The
approximation relies on a first-order Taylor series expansion of a finite element flow
model and an adjoint state numerical method for variably saturated flows to evaluate
sensitivities. This approach can be employed to analyze uncertainties associated with
predictions of head of steady-state or transient flows in variably saturated porous
media, with any type of boundary and initial conditions. Limitations of stochastic
analytical methods such as spectral/perturbation approaches and the time-consuming
Monte Carlo simulation technique are thus alleviated. An example is given to
demonstrate the utility of the approach and to investigate the temporal evolution of
head variances in a variably saturated flow regime. Results show that the fluctuation of
the water table can have significant impacts on the propagation of the head variance.
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1 INTRODUCTION

Hydrological properties of the subsurface generally exhibit
a high degree of spatial variability at various scales due to
heterogeneous nature of geological formations. Our knowl-
edge of the spatial distribution of these hydraulic properties
is usually limited and incomplete. As a result, our predic-
tions of flow processes in the subsurface are subjected to
uncertainties. To address the uncertainty associated with our
predictions, stochastic modeling of flow processes in geo-
logical media becomes necessary. In the past two decades,
many stochastic analyses have derived statistical moments
of hydraulic heads of flow processes either in fully saturated
aquifers or unsaturated vadose zones. Few analyses have
been directed toward the study of flow in an integrated
system where part of the system is unsaturated (vadose
zones) and part of it is fully saturated (groundwater reser-
voirs). Since water usually percolates through the vadose
zone from the land surface to the aquifer, a realistic stochas-
tic analysis must consider the interaction between the
vadose zone and the aquifer.

In general, given the statistical properties of hydraulic
parameters, statistical moments of heads can be derived

through analytical or numerical analyses'. Based on an
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analytical first-order approximation, Dagan®’ and Rubin
and Dagan” formulated covariance functions of head in uni-
form flow under fully saturated conditions. Bakr et al?,
Mizell et al®, Gelhar and Axness’, Yeh et al.®'® and
Russo'’ employed a small perturbation approach and spec-
tral analysis to derive the spectral density functions and
covariance function of head in saturated or unsaturated
porous media. On the other hand, a Monte Carlo simulation
was employed by Delhomme'? to examine the effect of
measurements of transmissivity on the reduction of the
head prediction variance; Smith and Schwartz!*~'® ana-
lyzed the condition effect of measurements of hydraulic
parameters on head and solute arrival time based on
Monte Carlo simulations. Recently, Harter and Yeh!® used
Monte Carlo simulation to investigate the effect of conduc-
tivity and head measurements on the solute transport in the
vadose zone.

Although numerical approaches are flexible, analytical
methods are often preferred because they can provide expli-
cit relationships between the statistical properties of hydrau-
lic parameters and state variables associated with flow
processes. However, the analytical approach generally has
to rely on simplified assumptions, such as infinite flow
domains, small variability of hydraulic parameters, and sta-
tionary processes. While these assumptions are necessary to
avoid complications in mathematics, they hardly reflect the
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condition in field problems. For example, flow domains for
groundwater are usually bounded by geological structures
such as faults and different geological units. The upper
boundary of groundwater reservoirs is generally associated
with recharge or evapotranspiration that varies in time and
space. In addition, the flow processes from vadose zones to
aquifers are nonstationary since the degree of mean water
saturation varies in space and time.

A numerical Monte Carlo simulation requires no such
assumptions, except the specification of probability
density functions for the hydraulic parameters. It can
also be applied to either fully saturated, unsaturated or
variable saturated flow in multidimensional media under
steady or transient flow conditions. Furthermore,
measurements of aquifer parameters can be easily incor-
porated into the analysis of head moments without
assuming any joint probability relationship between
heads and conductivity values'®. Nevertheless, the
requirement of enormous CPU time, memory and storage
spaces is the major drawback of the Monte Carlo simu-
lation technique. In the analysis of multidimensional vari-
ably saturated flow problems, this shortcoming becomes
so severe that conducting such simulations is considered
formidable.

Besides these analytical methods and Monte Carlo simu-
lations, a first-order analysis through a Taylor series expan-
sion of finite element or finite difference models has been
used to derive approximate statistical moments of flow pro-
cesses. Dettinger and Wilson'” employed the first-order
approximation to analyze the intrinsic and information
uncertainty associated with numerical models. Townley
and Wilson'® applied the first-order approach to investigate
the uncertainty propagation during transient flow in aqui-
fers. Hoeksema and Kitanidis'® and Sun and Yeh?®° used the
same approach to derive the covariance function of head.
Overall, the advantage of this numerical first-order analysis
over Monte Carlo simulations is that the covariance function
of head can be explicitly related to the covariance functions
of aquifer parameters. As a result, the statistical moments of
head can be obtained without conducting a large number of
simulations, and the CPU problems associated with
Monte Carlo simulation can be avoided. On the other
hand, since this first-order analysis employs numerical
models into the formulation of covariance functions, it can
examine either steady-state or transient flow with any type
of boundary conditions as opposed to the analytical
approach.

In this paper a first-order numerical technique for formu-
lating statistical moments of head in transient, variably satu-
rated flow regimes in multi-dimensional porous media is
developed. We chose the first-order numerical analysis to
avoid problems associated with the analytical methods and
Monte Carlo simulations. A numerical adjoint state method
was also employed to reduce the computational effort in the
evaluation of sensitivities. Propagation of the head
variances from a vadose zone to an aquifer was then
investigated.

2 A FIRST-ORDER FORMULATION OF MOMENTS

Assume that three-dimensional flow in porous media under
variably saturated conditions can be described by the fol-
lowing equation:

i) 4
(S8 + C(¥) —-= VIKIDV(Y +x3)] ey

where: ¥ is the pressure head; S is the specific storage; 3 is
the index for saturation, and it is zero if ¥ < 0, one if ¥ =
0; C is the moisture capacity; X is the spatial coordinate x =
{x1x2x3} in which x; represents the vertical direction with
upward positive; ¢ is time; and K is the unsaturated con-
ductivity assumed to be related to the pressure head through
the exponential model®':

K(¥)=Kexp(a¥)

where K and « are the saturated conductivity and the pore
size distribution parameter, respectively. Based on the
exponential model, Russo™ presented a consistent form
of the 8-V relationship:

2
0=, — 0. )(exp(0.5a¥)(1 — 0.5a%))2+m 46,

where 0, is the residual water content and §, is the saturated
water content. m, which is a parameter related to the tortu-
osity of soils, is chosen to be zero in this study for math-
ematical simplicity. The moisture capacity in eqn (1) is
defined as d@/d¥.

Equation (1) can be solved deterministically if the
hydraulic parameters such as conductivity and soil retention
parameters are perfectly known. However, field data have
shown that these parameters vary significantly in the space
field**~>*, Delineating the spatial distribution of these para-
meters at high resolutions is not generally possible. As a
result, these hydraulic parameters may best be represented
as stochastic processes in space’>>. If these parameters are
assumed to be stochastic processes, eqn (1) becomes a
stochastic differential equation and the head is, in turn, a
stochastic variable characterized by its first and second sta-
tistical moments. The first moment represents the average of
all possible heads resulting from a given set of parameter
values while the second moment reflects the effects of
spatial variability in parameters (or uncertainties in our
mean head prediction). In the following analysis, we will
assume that saturated hydraulic conductivity (K and the
pore-size distribution parameter (o) are stochastic pro-
cesses. S, and m are assumed to be constant because of
their small spatial variabilities*>2¢,

2.1 Evaluation of first moments of head

If we assume InK, = F + f, na=A+a, C=C+c, and
V¥ = H + h, where F, A, C and H are the mean values; f, a, ¢
and & denote the perturbations, a first-order mean flow
equation, after omitting products of perturbations, can be
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written as:
N oH A
(C(Y) +5SS)E =~ V[exp(F — e"H)-V(H + x3)] 2

Notice that the mean flow eqn (2) has the same form as the
original flow eqn (1) by recovering K and « from F and A.
With the mean eqn (2), the H field can be determined if mean
values of parameters such as K and « are specified. However,
eqn (2) is only valid when the variability of K and « is very
small, much less than one. For larger variances, higher-order
terms should be included in the mean equation.

2.2 Evaluation of second moments of head fields

To address the uncertainty around the mean head field, it is
necessary to derive the second moment associated with this
mean field. To do so, the pressure head can be expanded in a
Taylor series about the mean values of parameters (F and
A). After neglecting the second- and higher-order terms, a
first-order approximation of the pressure head can be

expressed as
o
F, AH)f+ (Ez— F,A,H)a

2) 4
¥Y=H
+ ( "

The above equation can also be written in a matrix form if
the governing flow equation is discretized by a finite differ-
ence or finite element approach:

{(hY =Jlp A ulf ) + Thaly 4, m{a) 3

where {} indicates the vector of the discretized variable; J
is the Jacobian matrix that represents the derivative of head
with respect to the parameters. Multiplying eqn (3) with
transposes of {f}, {a} and {h} assuming f and a are uncor-
related, and taking the expected value on both sides of the
equation yields

Ryp = Jyp Ry
Rha = Jha Raa (4)
Ry, = JisRypJhg + JnaRaad i

where: Ry and R, are the covariance functions of f and a,
respectively; Ry, is the covariance function of head; Ry
denotes the cross-covariance functions between h and f; R,
is the cross-covariance of /2 and a. The covariance functions of
f and a can be specified as any one of the covariance mod-
els?™?®, although the exponential model is used in this study.
Notice that R, and any Jacobian matrix related to a will
become zero if the medium is fully saturated since the para-
meter a does not exist in saturated flow equations.

eqn (4) was previously derived in the similar way for fully
saturated flows by Dettinger and Wilson'” and Sun and
Yeh?. As can be seen the covariance functions, Ry, Ry
and R,, in eqn (4), are nonstationary due to boundary
conditions and variably saturated flow regimes. They
depend on locations, instead of the separation distance as
in a second-order stationary process.

3 SENSITIVITY ANALYSIS OF HEAD BY ADJOINT
STATE METHOD

The evaluation of the second moment of head fields requires
the determination of the Jacobian matrices. The calculation
of Jacobian matrices is often referred as the sensitivity ana-
lysis since Jacobian matrices represent the changes of heads
in response to the changes of hydraulic parameters. In our
formulations, the sensitivity analysis is carried out by the
adjoint state approach, in which the performance measure
function is**~°;

= L JQG(\I/, f,a)dQ dr (5)

where ¥ is the time-dependent pressure head of eqn (1). G
is the state function which in this case is the pressure head
at any given time and location.

Taking the derivative of the performance function with
respect to any of the parameters, for instance, f, results in the
marginal sensitivity of the performance function P:

oP 3G  9G v
e L JQ(EFL__) dQdr (6)

a¥ of
The first term on the right-hand side of eqn (6) reflects the
direct contribution form conductivity, while the second
term represents the indirect influence of conductivity in
the performance measure.

Equation (6) requires the evaluation of state sensitivity
a¥/af, which can be determined by using the adjoint state of
eqn (1). To formulate the adjoint state equation, we differ-
entiate eqn (1) with respect to f and obtain

_ 3 [9K Y +x3)
af[(SB+ )_—] 8x-[6f ox;

(Y +x3)
) @

Let ¢ = 0¥/df be the state sensitivity. Rearrange eqn (7)
and we have

aC ¥
gf‘g}‘"l-(s 6+C)—
o [ 9K, Y +x3)
““[( o P+ Ke "’) a, ]
o]
_a_)q(Kax,) 0 ®

Multiplying eqn (8) with an arbitrary function ¢* and inte-
grating it over time and spatial domains, 7 and €, yields

aC oV 3 .
L L{—m«b +(SB8+C) -0

of ot
a [/ oK (¥ +x3)
e e +xos) X505
09\ . ~
_8_)61( ax'>¢ }det—O ®
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Applying Green’s first identity to the third and fourth terms
in egn (9), using partial integration rule on the second term,
and rearranging the first term, we obtain

A(S.8+0)8") o (. "
JJ{[ Rl _&E(Kax)]"s

i) oy

t I

+[K +Kad]

+ | (5.8+ 00 -y,

~

— | (5.8+C)"¢ del,—

- j iqu ndl' dt

| a¢¢ndl‘dt—0 (10)
Ji I‘ 0x;

where: T' represents boundary domains; N is a final or
terminal time; and gy is the flux through boundaries. Add-
ing eqn (10) to eqn (6), the marginal sensitivity of the
performance measure becomes

H{

8(\I!+x3)a¢ i(K(}p_*)]gb
ox; ox;  oOx; ox;

[ ~56+ 0%

. ?ﬁe " ‘I,)a(\lr +x3) 00"

°F }dQ dr+ an

i l

jQ(SSB +C)p ¢l — Jﬂ(Ssﬁ +C)¢p" e Al o —

3b 4 j J 9",
LL-a?p ndldi+ | | Koogndldr

To evaluate eqn (11), one must specify the state sensitiv-
ity ¢ or eliminate its contribution in eqn (11) by setting the
coefficient in front of ¢ to zero. If choosing the latter, we
have an adjoint state equation:

oG ¢* (Y +x3) 39"
oKk —— 377
8\1, (S B + C) 6xi 6x,-
— ——(K 3 ) =0 (12)
ax; 0x;
subject to boundary conditions:
¢* l]"] - 0
K A =
0x; | T2

and the terminal condition:

¢*|t:N|=O

where ¢* is the adjoint state variable; I'; is the first type of
boundary condition; I', is the second type of boundary
condition.

Notice that adjoin state eqn (12) is linear in terms of the
adjoint state variable; it is valid for flow problems in fully
saturated aquifers when « is equal to zero; for unsaturated
flow, K and C are known and evaluated at the given ¥ value.
If we choose G=V¥é(x — x; t — 1), an measurement or
interest location where the sensitivity is requested, the state
sensitivity at time f is evaluated as

¥ 9P _ jj a(\Ir+x3)a¢>
of  of nk ax;  ox;

I
n J‘ J afIb
I, af
where Q is the exclusive subdomain of f;, which is element
k in this study since f is defined at each element. The
change in the domain of integration from { to { is due
to the fact that K is only related to f at element k when the
simulation domain is discretized.
The evaluation of sensitivity of pressure head with
respect to Ina is obtained following the same procedure.

In fact, the adjoint state equation for Inw is identical to
eqn (12). However, the state sensitivity is now computed by

dQ dr (13)

pdl' dt — J J’K———d)ndl‘dt

W *
9 P J I K¥a oY +x3) 00 dQ dr
aak aak T Jo 0x; 0x;
aCIb J J 0"
ndl' df — K—¢-ndll dr
4[ Jrz T JT, axj a

(14)

Notice that the adjoint state equation only needs to be
solved once for f and a. However, the adjoint state equation
under transient flow conditions needs to be solved back-
wardly in time because of the terminal condition generated
during the formulation of the adjoint state equation. The
initial condition appeared in eqns (10) and (11) will be zero
if initial pressure heads are prescribed. To avoid complica-
tions in calculating the cross-covariance, the sensitivities of
head are evaluated for each element since the aquifer para-
meters such as the conductivity and pore size distribution
parameter are specified for each element. However, the
finite element model of eqn (2) computes heads at each
node of the element. In order to evaluate the cross-covar-
iance, the elemental value of heads is defined as the average
of the nodal head values in that element. In the following
example, the mean flow eqn (2) and the adjoint state eqn
(12) are numerically solved using a Galerkin finite element
technique™'

4 NUMERICAL EXAMPLE

To demonstrate our approach, a two-dimensional transient
flow case is chosen for sensitivity and unconditional
moment analyses. The simulation domain (80 X 80 cm) is
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Table 1. Hydrological and statistical parameters used in the analysis

K, (cm/s) a (1/cm) afz 0[21 Apkg (cm) 0 8, S (1/em) Covariance model for f
and a
0.009 0.05 0.3 0.1 20 0.0 0.0001 exponential

evenly discretized into 20 X 20 elements and 441 nodes.
The values of hydraulic parameters and statistical para-
meters are listed in Table 1. We assume that InK; and Ina
are uncorrelated. Fig. 1 displays the boundary and initial
conditions for this analysis. Initially, the pressure profile is
in hydrostatic status, with the total head equal to 3 cm
everywhere. At time equal to zero (¢t = 0) the top boundary
is suddenly switched to a constant pressure head of — 8 cm,
presenting a step input of water.

Here, our performance measure is defined as the head
measurement at a given location along a streamline (curve
C in Fig. 1) at different times. Based on this performance
measure, the sensitivity value at an element thus represents
the change of head at the given measurement location, with
respect to a unit change in InK; or Ina at that element. A
positive value for the sensitivity with respect to InK at an
element means that an increase or decrease of InK| at the
element will yield an increase or decrease in the head value
at the measurement location. In contrast, a negative value
for the sensitivity with respect to lna implies that an
increase in Ina will produce a decrease in head and vice
versa.

Fig. 2(a)—(d) show contours of head sensitivity values
with respect to InK at two measurement locations, A and
B (see Fig. 1), for r = 50 and 100 s. Based on these figures,
an increase of conductivity at the upstream area of the head
measurement location (or a decrease of conductivity at the
downstream) will increase the head at this location. Con-
versely, the head will be reduced if the conductivity is
decreased at the upstream or increased at the downstream.
Overall, the magnitude of the positive sensitivity is greater
than that of the negative one, suggesting that conductivities
at the upstream area have stronger influence on the head
value than those at the downstream. Such an asymmetrical
sensitivity distribution in the vertical direction is attributed
to the decrease in hydraulic gradient along the streamline

y=-8 cm
T 80
+ B (38,66)
|
= Curve C &=
> | o
Z | z
o |
= \\
N kA\(‘i67 16)
0
0 No flow 80
(cm)

Fig. 1. lllustration of the flow domain, boundary and initial con-
ditions for the test example.

and the horizontal asymmetry is caused by the nonuniform
flow. Boundary conditions also play an important role in the
sensitivity behaviors of head with conductivity. Fig. 2(a)
and (b) show that the highest sensitivity locates at the soil
surface where the conductivity value determines the amount
of water entering into the soil since a prescribed pressure
head is given at this boundary. Sensitivity values for the
head at location B (located in the unsaturated zone) are
much greater than those for the head at location A (located
in the saturated zone) at t = 50 and 100s. This can be
attributed to the fact that the gradient in the unsaturated
zone is greater than that in the saturated zone. It is found
that the head in the saturated zone at A is influenced by
conductivities over a larger area than the head at B in the
unsaturated zone. At t = 100, the hydraulic gradient in the
saturated zone increases and subsequently, the absolute
head sensitivity for location A, in the saturated zone,
increases. At the same time, the gradient near the soil sur-
face decreases and the positive head sensitivity for B in the
unsaturated zone decreases and the negative sensitivity
values become more negative.

Fig. 3(a)—(d) show the sensitivity of head at locations A
and B to Inw. Since the pore size distribution parameter
becomes effective only in the unsaturated zone, the sensi-
tivity is evaluated for Ina at locations wherever the pressure
head is negative. Similar to the sensitivity of heads to InK,

80 80
60} 60}
Q
3
o 40 40
et
1] 9 1224
- 7 0813
20 20r ] 0.402
3 0.009
(2¢) 1 0420
20 40 60 80
80:§?~_—' 80
60 60r
Q \3
] ~——
8 4of aof
- 2
v 1 ) g
20} 0.022 20f 5 gﬁgo
: 3 034
[ (2b) ) -0.009 (Zd). . 1077
20 40 60 80 20 40 60 80

Fig. 2. Sensitivity of head [(a) at location A and ¢ = 50s; (b) at

location A and ¢t = 100s; (¢) at location B and ¢t = 50s; (d)

location B and r = 100 s] with respect to InK (solid lines repre-
sent positive values and dash lines represent negative ones).
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80
60F
18
2 r
2 ? 40F
ti 5 -0.00044 9 0.33
- 3 -0.00061 ; -8-;(3)
201 1 -0.00079 A 20F 3 09
(3a) (3¢) 1 -140
20 40 60 80 20 40 60 80
80
Q 601
(V]
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- 40
J_', 9 -0.004 9 061
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201 .5 -0.023 20f 5 001
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Fig. 3. Sensitivity of head [(a) at location A and ¢ = 50 s; (b) at

location A and r = 100s; (¢) at location B and ¢t = 50s; (d)

location B and ¢ = 100 s] with respect to Ina (solid lines represent
positive values and dash lines represent negative ones).

the sensitivity of head with respect to Ina is gradient depen-
dent. In addition, it depends on the product of a and the
mean pressure head, ¥ [see eqn (14)]. Therefore, the sign of
the sensitivity is opposite to that in Fig. 2 because the mean
pressure head is negative under unsaturated conditions.
Another way to examine the relationship between head
and hydraulic parameters is the cross-correlation analysis.
The cross-correlation analysis provides useful information
for the geostatistical inverse approach32’33. Fig. 4(a)—(d)

80 80 M ,
=
60 0P
3 5
(7]
R 40 40K
1] 3 0.77
- 7 0.5
20 20\1/§/g§§/
0.02
1
L
%]
o
=
[

Fig. 4. Cross-correlation functions between head and InK [(a) at
location A and ¢ = 50s; (b) at location A and tr = 100s; (c) at
location B and t = 50 s; (d) location B and ¢+ = 100 s].

80—
60}
Q
Q
2 ‘
K 40
I
= s 0 7017
20k 1 L 5025
0 A 3 -0.39 20 3 0.32
(5a) 1 047 (5¢) 1 -040
0 4080 80 2030 80 80
(8]
L
w
[]
o
p—
It
= 7 -0.10
20F 5 -0.26 o 5 -0.16
A3 aAn 20 3 023
(5b) 1 0.39 (5d) 1 029
03060 R0 20040 6080

Fig. 5. Cross-correlation functions between head and Ina [(a) at
location A and 7 = 50 s; (b) at location A and t = 100s; (c¢) at
location B and ¢ = 50 s; (d) location B and r = 100 s]; solid lines
represent positive values and dash lines represent negative ones.

show the cross-correlation function between the head at
the measurement locations, A, B and InK, of all elements.
Note that the cross-correlation function at any specified
location is determined by dividing R, by the product of
standard deviations of & and f at the location. As can be
seen the heads are always positively correlated with con-
ductivity at all locations in the flow domain. This positive
correlation is attributed to the prescribed constant head
boundary conditions. An increase of conductivity at any
location will yield an increase of infiltration rate from the
soil surface, which in turn increases the head. Conversely, a
decrease of conductivity will decrease the rate and the pres-
sure head decreases. The cross-correlation increases slightly
as more water enters the simulation domain.

Fig. 5(a)-(d) display the cross-correlation function
between head and Ino. Since « does not exist in the satu-
rated area, p,, becomes zero below the water table. The
general behavior of p,, is similar to that of head and con-
ductivity, except that negative correlation dominates all the
area. The negative correlation is due to the fact that an
increase of « is equivalent to a decrease of K under the
given boundary conditions. As the infiltration continues, the
cross-correlation of head with Ina diminishes, in contrast to
the results in Fig. 4. Also shown in Fig. 5 is that pore size
distribution parameter has less influence on head values than
conductivity under this relative wet condition. These find-
ings are consistent with that of Yeh and Zhang™>.

It should be emphasized that the concept of sensitivity is a
special case of cross-correlation analysis. In the sensitivity
analysis, InK or In« is assumed to be spatially uncorrelated
and thus, the change of head at a given location reflects the
change of InK or In« of a particular element only. In other
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words, the sensitivity represents a one to one relationship
between the head at a given location and the parameter of a
particular element. On the other hand, the existence of the
spatial autocorrelation between two InK or In« values in the
cross-correlation analysis implies that a change of InK; or
Ina of one particular element can induce corresponding
changes of InK or In of other elements. Therefore, when
a cross-correlationship is examined, the change of head at a
given location reflects not only the effects of the change of
InK or Ina at one element, but also that of the consequent
changes of InK, and Ina at other elements. More specifi-
cally, the cross-correlation function depicts the relationship
between the head at a given location and the parameter of a
particular element with the consideration of its relationship
with parameters at other elements. This explains the reason
why only positive cross-correlation exists in Fig. 4 while
Fig. 2 depicts both negative and positive sensitivity values.
That is, due to the spatial correlation, the large positive
sensitivities has a strong influence on the cross-correlation
between heads at locations A and B, and InK|.
Covariances of head can be calculated using eqn (4). For
conciseness, only the variance of head is discussed here.
The head variance represents the uncertainty in our predic-
tion of mean head or the head variation around the mean,
due to spatial variability in InK and Ino. The mean pressure
head distributions along curve C at various times (50, 100,
120, 140, 160 and 180 s) are shown in Fig. 6(a) where the
vertical axis, £, is the distance along curve C, measuring
from the lower end of the curve. The head variance distribu-
tions corresponding to the mean head distributions at differ-
ent times are depicted in Fig. 6(b). These variance
distributions take the form of a pulse and are always zero
at the land surface since a constant head boundary is used
(i.e. no uncertainty). The head variance grows from the
upper boundary, reaches the maximum (peak variance),
and then decreases to zero at the end of curve C where a
constant pressure head is prescribed. At early times (¢ <
160), the peak variance is found associated with the location
of wetting fronts where the hydraulic gradient is the great-
est; the position of the peak variance moves downward with
the wetting front. When the wetting front arrives at the water
table at £ = 140 s, this peak stays at the water table and does
not further propagate through the saturated zone. At = 160
and 180 s, as the water table continues to rise, this peak head
variance moves upward along with the water table and its
magnitude also increases. Such findings suggest that the
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o /4 (62) (6b)
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L [.!5\ \ —
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60— N\ N\ \\
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§ = - t=140
r t=160
F t=180
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Fig. 6. (a) Profiles of mean pressure head; (b) head variances
along curve C at different times.

water table will have significant impacts on the analysis of
propagation of uncertainty or head variance in heteroge-
neous porous media.

5 DISCUSSIONS

A flexible first-order numerical model is developed to study
the sensitivity, the head variance, and cross-correlation
functions of f and 4 (and h and a) for transient flow in
variably saturated porous media. The results of the study
provide insight to the effect of heterogeneity on transient,
variably saturated flow. The flexibility of the approach
stems from the fact that numerical models and the adjoint
state method are used conjunctly. Numerical models pro-
vide a simple means to treat any type of boundary and flow
conditions. As a result, unlike the spectral method and other
analytical methods, the assumption of stationarity is not
required in the evaluation of statistical moments. The flex-
ibility of our approach also stems from its ability to employ
different types of K-¥ and §—V¥ relationships (other than
the exponential model) in the analysis. In contrast, the ana-
lytical methods are generally limited to the exponential
model so that stochastic equations can be linearized.

Table 2. Comparisons of computational efforts in steady-state flow simulations

Variance Covariance
One point m points One pair m pairs
Monte Carlo simulation NE N, N, N 5 N 5
NM N, r N M N, T N, rm
Memory (N 4+ Dm (N, + )m (N, + )m (N, + Dm
First-order method NE 2 m+1 3 m+1)
NM m*2 m12 m*2 m’
Memory m*2 3m¥2 m*2 3am*2
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Table 3. Comparisons of computational efforts in transient flow simulations

Variance Covariance
One point m points One pair m pairs
Monte Carlo simulation NE NN, NN, NN 5 NN,
NM NTNr NTN,m IV']']Vr NTN,m
Memory NN+ I)m NN, + Dm NN, 4+ 1)m NN+ Dm
First-order method NE N+ 3(TiAD Ny +md (T/A1) Ny + 25 (T/AD Ny + md (T/Ar)
NM Nm*2 Nm’i2 Nm*12 Nm’2
Memory Nam?/2 3Ngm*/2 3Nm*/2 3Ngm*/2

> represents the summation over total time steps Ny.

The adjoint state method is computationally efficient. It
allows us to evaluate the sensitivity only at the node of
interest (such as locations of head measurements), instead
of all the nodes as in other methods of sensitivity analysis.
Additionally, the adjoint state equation usually retains the
general form of the governing flow equation so that repeated
finite element formulations can be avoided. In addition, the
adjoint state equation for different parameters in the head
sensitivity analysis remains the same; they only need to be
solved once for all the parameters. In case of flow through
variably saturated porous media, the governing equation is
nonlinear, but the adjoint state equation is linear.

To compare the computational effort of our approach
with that of the numerical Monte Carlo simulation, we eval-
uate CPU time and memory needed for each approach. CPU
time is usually proportional to the number of equations (NE)
and the number of multiplications (NM). Memory is the
computational space required to complete a calculation.
Table 2 and Table 3 provide estimates of the computational
efforts required for the calculating the second moment of
head by both Monte Carlo simulation and our first-order
approach. In these tables, m is the total number of nodes;
N, is the number of realizations needed in Monte Carlo
simulation; Nt is the total number of time steps within the
simulation period; T; is the time at output /; and At is the
time step. As can be seen our approach has the advantage of
solving fewer equations over the Monte Carlo simulation if
the number of points of interest is much less than the total
number of nodes. This situation corresponds to many field
problems where we have only sparse measurements. On the
other hand, when a large number of points of interest are
involved, the number of equations to be solved in our
approach can be in the same order as that in the Monte
Carlo simulation. However, in our approach the actual
CPU time needed to solve one equation is much less than
that in solving one equation in the Monte Carlo simulation.
The reason is that the adjoint state equation is linear as
opposed to the Richards equation. Moreover, the computa-
tional grid size and time step can be much larger in the
adjoint state method than those in the Monte Carlo simula-
tion since the parameters considered in the adjoint state
method are the constant mean. Therefore, adjoint state
method requires less CPU time in solving equations. As
for the number of multiplications and memory, Tables 2
and 3 show no significant difference between these two

methods, except that in the calculation of variance, Monte
Carlo simulation conducts less NM than adjoint state
method. Nevertheless, it can be concluded that our
approach, in general, requires less computational effort
than Monte Carlo simulation.

Another advantage of the first-order approach lies in its
ability to derive co-conditional moments by incorporating
measurements such as head and moisture content to inves-
tigate the effect of conditioning®>**. In general, a co-condi-
tional Monte Carlo simulation must build upon this first-
order analysis.

In spite of the many advantages of our approach, we have
to emphasize that it is based on a first-order approximation.
The validity of the approximation is generally warranted if
the variance of saturated hydraulic conductivity is less than
one for saturated flow problems. For unsaturated flow pro-
blems, the first-order approximation is valid if the variance
of unsaturated hydraulic conductivity is much less than
one'®. At large variances, a higher order approximation or
an iterative approach is required>*>*,

Finally, application of our first-order numerical model to
the analysis of propagation of head variance reveals some
interesting findings that have not been reported previously.
Our results provide quantitative evidences to show the effect
of fluctuation of the water table. It thus becomes clear that
vadose zones and aquifers must be treated as an integrated
system to advance our understanding of flow and transport
in the vadose zone and aquifers.
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