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Abstract. A geostatistical inverse technique utilizing both primary and secondary
information is developed to estimate conditional means of unsaturated hydraulic
conductivity parameters (saturated hydraulic conductivity and pore size distribution
parameters) in the vadose zone. Measurements of saturated hydraulic conductivity and
pore size distribution parameters are considered as the primary information, while
measurements of steady state flow processes (soil-water pressure head and degree of
saturation) are regarded as the secondary information. This inverse approach relies on the
classical linear predictor (cokriging) theory and takes the advantage of the spatial cross
correlation between the soil-water pressure head and each of the following: degree of
saturation, saturated hydraulic conductivity, and a pore size distribution parameter. Using
an approximate perturbation solution for steady, variably saturated flow under general
boundary conditions, the cross covariances between the primary and secondary
information are derived. The approximate solution is formulated on the basis of a first-
order Taylor series expansion of a discretized finite element equation. The sensitivity
matrix in the solution is evaluated by an adjoint state sensitivity approach for flow in
heterogeneous media under variably saturated conditions. Through several numerical
examples the inverse model demonstrates its ability to improve the estimates of the spatial
distribution of saturated hydraulic conductivity and pore size distribution parameters using
the secondary information.

Introduction

The cokriging technique has been widely adopted to esti-
mate transmissivity, head, velocity, and concentration of pol-
lutants in aquifers [Kitanidis and Vomvoris, 1983; Hoeksema
and Kitanidis, 1984, 1989; Rubin and Dagan, 1987; Gutjahr and
Wilson, 1989; Harvey and Gorelick, 1995; Yeh et al., 1995a,
1996]. It has also been applied to estimate water content in the
vadose zone, using water content, soil-water pressure head, soil
surface temperature, and soil texture data sets [e.g., Vauclin et
al., 1983; Yates and Warrick, 1987;Mulla, 1988]. However, little
attention has been directed toward the application of this
method to the inverse problem in the vadose zone (i.e., esti-
mation of unsaturated hydraulic conductivity parameters using
soil-water pressure head and water content data sets).
Predicting water and solute movements in the vadose zone

with a reasonable accuracy requires a large number of mea-
surements of the unsaturated hydraulic conductivity [e.g., Yeh
and McCord, 1994; Yeh, 1995]. Unlike saturated hydraulic con-
ductivity, the hydraulic conductivity of unsaturated porous me-
dia is a nonlinear function of soil-water pressure head and
moisture content. Because of this nonlinearity, measurements
of the unsaturated hydraulic conductivity are thus a difficult,
time-consuming, and costly task. Subsequently, characteriza-
tion of the vadose zone by direct measurements of the hydrau-
lic conductivity at a large number of locations becomes a for-
midable task. On the other hand, information about flow
processes such as soil-water pressure head and water content

data sets can be collected with relative ease in most shallow
and unconsolidated vadose zones with inexpensive tools. Wa-
ter content data sets may, however, be the only information
that can be collected in large quantities in the thick vadose
zone of the western region of United States. Poorly sorted
alluvial deposits, conglomerates, and solid rock masses com-
posing the vadose zone in the region often prohibit the use of
pressure measurement devices. As a result, it seems logical to
take advantage of the abundance of information about flow
processes to improve our estimates of unsaturated hydraulic
properties in the field. In fact, Harter and Yeh [1996] recently
demonstrated that using cokriging and a numerical model with
a large amount of soil-water pressure head measurements can
greatly improve the prediction of movement of solutes in the
vadose zone. While their finding is promising, the method is
limited to unit mean gradient, uniform flow, and stationary
conditions which may not be suitable for application to a wide
range of field problems.
In this paper a flexible geostatistical inverse technique that

can utilize both soil-water pressure and water content data sets
is developed to estimate the approximate conditional mean
unsaturated hydraulic conductivity parameters in the vadose
zone. The technique is flexible in the sense that it can be
applied to nonuniform flow and nonstationary problems under
field conditions. To demonstrate the ability of the proposed
methodology and the benefit of using soil-water pressure head
and water content to estimate the unsaturated hydraulic con-
ductivity parameters, several numerical experiments were car-
ried out. Explanations for the improvement on the estimates
due to the use of both soil-water pressure and water content
data sets are provided.
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Mathematical Formulations

Governing Flow Equations

Steady state flow in two-dimensional heterogeneous porous
media under variably saturated conditions can generally be
described by



 xi
FK~c!

~c 1 x2!
 xi

G 5 0 i 5 1, 2 (1)

with specified boundary conditions

c 5 c* on G1
(2)

qini 5 q* on G2

where x1 and x2 are horizontal and vertical coordinates (pos-
itive upward), respectively. The soil-water pressure head, c, is
positive for saturated flow and negative for unsaturated flow.
The prescribed head on boundary G1 is c*, and q* is the
prescribed flux normal to boundary G2. K(c) is the unsatur-
ated hydraulic conductivity (assumed locally isotropic), which
varies with c under unsaturated conditions. In this study the
Gardner-Russo model [Russo, 1988] is used to describe the
relationship between K and c. That is,

K~c , x! 5 Ks~x! exp @a~x!c~x!# (3)

where x is the position vector, { x1, x2}, Ks is the saturated
hydraulic conductivity, and a is a pore size distribution param-
eter. The relationship between water content and soil-water
pressure head is described by the following function:

Q 5
u 2 u r
u s 2 u r

5 e20.5aucu~1 1 0.5a uc u!2/t12 (4)

where Q is degree of saturation or effective saturation, u is the
moisture content, us and ur are saturated and residual mois-
ture contents, respectively, and t is a soil parameter which
accounts for the tortuosity of the flow path and the correlation
between pores.

Geostatistical Inverse Approach

Assume that the natural log of saturated hydraulic conduc-
tivity ln Ks and pore size distribution coefficient ln a are sto-
chastic processes with means E[ln Ks] 5 F( x) and E[ln a] 5
A( x) and perturbations f( x) and a( x), respectively. Similarly,
the soil-water pressure c and effective saturation Q are also
considered as stochastic processes that can be expressed as
c( x) 5 H( x) 1 h( x) and Q( x) 5 S( x) 1 s( x), where
H( x) 5 E[c( x)] and S( x) 5 E[Q( x)] are the means and
h( x) and s( x) are the perturbations, respectively. Suppose we
have nf observed saturated hydraulic conductivities f( xi),
where i 5 1, 2, z z z , nf; na observed pore size distribution
coefficient a( xj), where j 5 1, 2, z z z , na; nh soil-water
pressure measurements, h( xk), where k 5 1, 2, z z z , nh; and
ns sampled effective saturation s( xl), where l 5 1, 2, z z z , ns.
We want to estimate f and a at locations where no samples are
available. In the stochastic concept, one desirable estimate is
the fields of f and a that represent the realizations conditioned
on the measurements. The other is the expected value of all the
possible realizations of f and a fields that are conditioned on
the measurements of f, a, h, and s (conditional means). The-
oretically, the former will have an infinite number of possibil-
ities and the latter is unique. Our geostatistical inverse ap-
proach is intended to derive the conditional mean fields.

If we assume that the distributions of f, a , h, and s are
jointly normal, the conditional mean estimates of f( x) and
a( x) at unsampled locations x0 can be expressed by the linear
combination of the weighted observed values of f, a, h, and s
(assuming f and a are uncorrelated).

fco~x0! 5 O
i51

nf

Pfi f~x i! 1 O
k51

nh

Qfkh~xk! 1 O
l51

ns

Rfl s~x l!

(5)

aco~x0! 5 O
j51

na

Paj a~x j! 1 O
k51

nh

Qakh~xk! 1 O
l51

ns

Ral s~x l!

In (5), fco and aco are the cokriged values of f and a at the
unsampled location, x0. Pf i, Qfk, and Rf l are cokriging coef-
ficients for estimation of f with respect to the measurements of
f, h, and s; Paj, Qak, and Ral are cokriging coefficients for the
estimate of a with respect to the samples of a , h, and s. The
i, j , k, and l are the indices for observed f, a , h, and s,
respectively. These cokriging coefficients are selected in such a
way that the estimations expressed by (5) will have the minimal
variances, or

E@~ fco 2 f *!2# 5 min
(6)

E@~aco 2 a*!2# 5 min

where f * and a* are the unknown true values of f and a at the
unsampled location.
Substituting (5) into (6), taking the derivatives of (6) with

respect to the coefficients, and setting the resultants to zero
lead to two sets of the cokriging system of equations. The
cokriging system of equations for calculating the cokriging
coefficients related to saturated hydraulic conductivity, PfI,
Qfk, and Rfl, are

O
mi51

nf

PfiCff ~x i, xmi! 1 O
mk51

nh

QfkCfh~x i, xmk! 1 O
ml51

ns

RflCfs~x i, xml!

5 Cff ~x i, x0!

O
mi51

nf

PfiChf ~xk, xmi! 1 O
mk51

nh

QfkChh~xk, xmk! 1 O
ml51

ns

RflChs~xk, xml!

5 Chf ~xk, x0! (7)

O
mi51

nf

PfiCsf ~x l, xmi! 1 O
mk51

nh

QfkCsh~x l, xmk! 1 O
ml51

ns

RflCss~x l, xml!

5 Csf ~x l, x0!

The cokriging coefficients associated with pore-size distribu-
tion parameter, PaI, Qak, and RaI, can be derived by solving
the other set of the system of equations:

O
mj51

na

PaiCaa~x j, xmj! 1 O
mk51

nh

QakCah~x j, xmk! 1 O
ml51

ns

RalCas~x j, xml!

5 Caa~x j, x0!

O
mj51

na

PaiCha~xk, xmj! 1 O
mk51

nh

QakChh~xk, xmk! 1 O
ml51

ns

RalChs~xk, xml!

5 Cha~xk, x0! (8)
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O
mj51

na

PaiCsa~x l, xmj! 1 O
mk51

nh

QakCsh~x l, xmk! 1 O
ml51

ns

RalCss~x l, xml!

5 Csa~x l, x0!

where Cff, Caa, Chh, and Css are the autocovariance functions
of f, a, h, and s, respectively, and the others Cpq ( p , q 5 f,
a, h, or s) are cross-covariance functions between p and q.
The cokriging variances associated with these estimates are

given by

O
f

5 Cff ~x0, x0! 2 O
i51

nf

PfiCff ~x i, x0! 2 O
k51

nh

QfkCfh~xk, x0!

2 O
l51

ns

RflCfs~x l, x0!

(9)

O
a

5 Caa~x0, x0! 2 O
j51

na

PajCaa~x j, x0! 2 O
k51

nh

QakCah~xk, x0!

2 O
l51

ns

RalCas~x l, x0!

where • f and •a denote the cokriging variance of ln Ks and a
estimates, respectively.
Theoretically, if all the variables are jointly normal, the

above approach should produce the conditional mean esti-
mates and conditional variances. Using Monte Carlo simula-
tion, Yeh [1989] demonstrated that under one-dimensional
flow conditions, h and f are likely to be jointly normal. How-
ever, the result was derived from numerical simulations of
uniform flow in random porous media, and its validity remains
to be tested in the field. To be conservative, we say our esti-
mates are approximate conditional mean fields and variances.

Evaluation of Covariances and Cross Covariances

In order to determine the cokriging coefficients in (7) and
(8), autocovariance and cross-covariance functions of the ran-
dom variables f, a, h, and s must be specified. The autoco-
variance functions of f and a fields, in general, can be esti-
mated from the field data set. The cross covariance of f, a , h,
and s and the autocovariance functions of h and s for unsat-
urated flow can be obtained either by (1) statistical analysis of
the observed data set or results from Monte Carlo simulations,
(2) first-order perturbation approximation of the stochastic
flow governing equation via spectral-perturbation technique
[e.g., Yeh et al., 1985 a, b], or (3) the combination of first-order
Taylor series approximation of flow equation and sensitivity
analysis [e.g., Dettinger and Wilson, 1981;Hoeksema and Kitani-
dis, 1984].
Statistical analysis of the sampled data requires a large num-

ber of samples of f, a, h, and s in order to estimate the cross
covariance and covariance functions. The estimated functions
may, however, not be positive definite, and this can cause
numerical problems in solving (7) and (8). Functions derived
from Monte Carlo simulations also suffer from the same math-
ematical difficulties. On the other hand, the covariance and
cross-covariance functions derived from the spectral analysis
are free from this problem, but they are limited to infinite
domains (without the effects of boundaries) as well as station-
ary random processes. To alleviate the problem associated with

the spectral technique, an approach based on the first-order
Taylor series approximation of the numerical model of (1) is
used to evaluate these covariance functions. Similar to the
spectral approach, this numerical approach is, however, limited
to small variation in the hydraulic parameters because of the
first-order approximation. The development of the numerical
approach is given as follows.
If we choose a finite element method to descritize (1), it can

be written in a matrix form

@G#$c% 5 $B% (10)

where [G] is the coefficient matrix, {B} is the vector associated
with boundary conditions, and {c} is the solution vector. Fur-
thermore, {c} can be written as

$c% 5 @G#21$B% (11)

Assume {F} and {A} are the vectors of the mean values of
log-saturated hydraulic conductivity and pore-size distribution
parameter, {F} 5 E[{ln KS}] and {A} 5 E[{ln a}], and {H} is
the vector of soil-water pressure evaluated at {F} and {A}. Let
{f} and {a} be the perturbation vectors of {ln Ks} and {ln a},
and {h} be the deviation of soil-water pressure from {H}.
Furthermore, if we assume that the magnitudes of perturba-
tion vectors {f} and {a} are small, we may approximate the
soil-water pressure head {c} with a multivariate first-order
Taylor series approximation of (11) at {F} and {A}:

$c% 5 $H% 1 $h% 5 g~$F% 1 $f%, $A% 1 $a%!

< g~$F%, $A%!1F c

 ln Ks
G

~$F%,$A%!

$f%1F c

 ln aG
~$F%,$A%!

$a%

(12)

where g represents the matrix representation of (11). After
subtracting the expected value of (12) from (12) itself, the
first-order approximation of the perturbation of soil-water
pressure can be written as

$h% < F c

 ln Ks
G

~$F%,$A%!

$f% 1 F c

 ln aG
~$F%,$A%!

$a%

5 @J ~h,f !#$f% 1 @J ~h,a!#$a% (13)

where matrices [J(hf )] and [J(ha)] are the sensitivity matrices
of {h} with respect to {f} and {a} evaluated at the mean values
{F} and {A}, respectively.
Performing some simple statistical operations using (13), the

covariance function of {h} and cross-covariance functions be-
tween {h} and {f} and {a} can be approximated as

@C fh# < @J ~hf !#@C f f#

@Cah# < @J ~ha!#@Caa# (14)

@Chh# < @J ~hf !#@C f f#@J ~hf !#T 1 @J ~ha!#@Caa#@J ~ha!#T

where [J]T is the transpose of the sensitivity matrix [J] and [Cff]
and [Caa] are the specified autocovariances of log-saturated
hydraulic conductivity ln Ks and log pore size distribution
coefficient ln a, respectively.
In the same way the sensitivity matrices of effective satura-

tion {Q} with respect to {ln Ks} and {ln a} are defined as

@J ~sf !# 5 F Q

 ln Ks
G @J ~sa!# 5 F Q

 ln aG (15)
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Thus, the approximate cross-covariance functions between {f},
{a}, and {s} are

@C fs# < @J ~sf !#@C ff#

@Cas# < @J ~sa!#@Caa# (16)

@C ss# < @J ~sf !#@C f f#@J ~sf !#T 1 @J ~sa!#@Caa#@J ~sa!#T

and the cross-covariance function between {s} and {h} can be
expressed as

@Chs# < @J ~sf !#@C f f#@J ~hf !#T 1 @J ~sa!#@Caa#@J ~ha!#T (17)

Notice that the above cross-covariance and covariance func-
tions related to flow processes (soil-water pressure head h and
effective saturation s) may vary with the locations and are not
necessarily functions of separation distance only. Such a non-
stationary behavior in the covariances is expected since the
flow process is nonstationary because of the finite and bounded
domain considered in the study.

Adjoint Sensitivity Analysis

To evaluate the sensitivity matrices of [J(hf )] , [J(ha)] ,
[J(sf )], and [J(sa)], the adjoint sensitivity theory is employed.
The adjoint state approach has been widely applied to ground-
water flow problems [e.g., Neuman, 1980; Sykes et al., 1985; Sun
and Yeh, 1992]. Its application to unsaturated flow problems,
however, has been limited. Here we followed the approach for
saturated flow developed by Sykes et al. [1985].
In adjoint sensitivity theory the Richards equation (1) with

boundary conditions (2) is defined as the “primary” problem.
Consider that the solution domain of the primary problem is
discretized into M elements with L nodal points and ln Ks and
ln a are defined at every element. If c is the soil-water pressure
at some locations xn in the domain (n 5 1, 2, z z z , N), the
sensitivities matrices (N3M) of c with respect to ln Ks and ln
a can be defined as

J ~hf !~n, m! 5
cn

~ln Ks!m
J ~ha!~n, m! 5

cn
~ln a!m

(18)

To evaluate (18), we choose a performance measure:

P 5 E
V

^~$b%, f! dV (19)

whereV is the flow domain bounded by boundary G.^({b}, f)
is a user-chosen function of system state f and system param-
eters vector {b}. In this study the system state is the total
hydraulic head f 5 c 1 x2, and system parameters {b} are
ln Ks, ln a, prescribed head boundary condition f*, and pre-
scribed flux boundary conditions q*.
The sensitivity of the performance measure P to any specific

parameter bk is defined as dP/dbk and can be expressed as

dP
dbk

5 E
V

F ^~$b%, f!

bk
1

^~$b%, f!

f
gG dV (20)

where g 5 df/dbk is the sensitivity of the total head to
parameter bk and is called “state sensitivity.” This state sen-
sitivity can be evaluated by solving a new differential equation
(sensitivity equation) derived by differentiating (1) with respect
to a specific parameter bk:



 xi
S K

bk

f

 xi
1 K

g

 xi
D 5 0 i 5 1, 2 (21)

The boundary conditions associated with (21) are

g 5
f*
bk

on G1

(22)
q*
bk

ni 1
q*
h gni 5

q*
bk

on G2

Sensitivity equation (21) has a similar structure to its original
equation (1). With boundary conditions (22), (21) can be
solved numerically to obtain the state sensitivity g. For each
specific parameter bk, sensitivity equation (21) has to be
solved once to evaluate the sensitivity of performance measure
P to the parameter bk. If the system includes a large number
of parameters bk, as in our analysis, this approach is time-
consuming [Kabala and Milly, 1990]. Alternatively, we can
avoid the direct evaluation of state sensitivity by formulating
adjoint equations of the partial differential equations for g.
Multiplying (21) by an arbitrary differentiable function l and

integrating over the flow domain V gives,

E
V

F l


 xi
SK g

 xi
D 1 l



 xi
S K

bk

f

 xi
D G dV 5 0 (23)

Applying Green’s first identity to (23) then adding the result-
ant to the sensitivity of performance measure (20) yields,

dP
dbk

5 E
V 5

^~$b%, f!

bk
1 g3

^~$b%, f!

f
1



 xi SK l

 xi
D 4

2
l

 xi

K
bk

f

 xi6 dV 1 E
G

S gK
l

 xi
ni 1 l

q1
bk

D dG

(24)

To eliminate the unknown state sensitivities g in (24), an ar-
bitrary function l is chosen to satisfy the following equation
and boundary conditions, known as the adjoint problem:

^~$b%, f!

f
1



 xi
SK l

 xi
D 5 0 (25)

associated with boundary conditions,

l 5 0 on G1
(26)

K
l

 xi
ni 5 0 on G2

To evaluate the sensitivity matrices of total hydraulic head with
respect to ln Ks and ln a, we define bk 5 ln Ks and bk 5 ln
a, respectively, and choose the user-defined function of (19) as

^~$b%, f! 5 fd~x 2 xp! (27)

Therefore the adjoint sensitivity equation (25) becomes



 xi
SK l

 xi
D 5 2d~x 2 xp! (28)

where d(x 2 xp) is the Dirac delta function, and xp is the
location where the sensitivity of head to changes of parameters
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is to be calculated. As (28) is similar to primary problem (1)
with the exception that K is known and independent of l and
the right-hand side is the Dirac delta function instead of zero,
(28) is linear and can be solved numerically just like a saturated
flow problem.
With the adjoint function (28) associated with boundary

conditions (26) the sensitivity performance measure (20) can
be determined by evaluating

cp
bk

5 E
V

F2
l

 xi

K
bk

f

 xi
G dV (29)

Notice that dP/dbk 5 df(xp)/dbk 5 dc(xp)/dbk because
P 5 f(xp) 5 cI(xp) 1 x2. Compared with directly solving
the state sensitivity equation of (21), the major advantage of
adjoint sensitivity analysis is that for different bk the adjoint
equation needs to be solved only once for a specific user-
chosen function ^.
If the system parameter bk denotes the log-saturated hy-

draulic conductivity in the element k, or (ln Ks)k, and the
exponential model (3) is used, then

J ~hf !~ p, k! 5
cp

~ln Ks!k
5 2O

l51

M

u1 E
Vl

l

 xi

f

 xi
dV (30)

where l is the element index, M is the total number of ele-
ments, and V l is the domain of element l. In addition,

ul 5
Kl

~ln Ks!k
5 KlF dkl 1 a l

c l
~ln Ks!k

G (31)

where Kl and a l are the unsaturated conductivity and pore size
distribution coefficient, respectively, of element l. The variable
d is the Kronecker delta (dkl 5 1 for k 5 l and 0 otherwise).
If we define the integral in (30) as

S~ p, l ! 5 2E
Vl

l

 xi

f

 xi
dV (32)

in which the adjoint function l is associated with the pressure
head cp located at xp, S( p, l ) can be evaluated numerically
with the known l and f distributions in the flow domain.
Therefore (32) can be rewritten as

O
l51

M

@dpl 2 Kla lS~ p, l !#J ~hf !~l, k! 5 2KkS~ p, k! (33)

p 5 1, 2, z z z , M

The sensitivity of soil-water pressure c l with respect to ln Ks
can then be obtained by solving matrix equation (33) which
contains M unknowns J( p, k), ( p 5 1, 2, z z z , M , and k is
fixed) with M equations. Notice that in (33) the matrix is
independent of the element index k. Hence the matrix has to
be evaluated only once, and the solution can be used directly to
determine J( p, k) for other elements.
Similarly, if the system parameter bk is defined as a log pore

size distribution coefficient on element k, that is, bk 5 (ln a)k,
the matrix equation of the sensitivities of soil-water pressures in
all elements with respect to ln a of one element k, J(ha)(p, k) 5
c i/(ln a)k can be obtained as

O
l51

M

@dpl 2 Kla lS~ p , l !#J ~ha!~l , k! 5 2KkakckS~ p , k! (34)

p 5 1, 2, · · ·, M

After sensitivity matrices of soil-water pressure with respect to
ln Ks and ln a are derived, sensitivity matrices of effective
saturation Q with respect to ln Ks and ln a can be evaluated
easily as follows.
Since very little information about the spatial statistics of t is

available, the degree of saturation expressed by (4) is thus
simplified by taking t as zero [Russo, 1988]. That is,

Q 5
u 2 u r
u s 2 u r

5 e0.5ac~1 2 0.5ac! (35)

Then, taking derivatives of Q with respect to ln Ks and ln a
yields

Q i

~ln Ks! j
5 20.25a i

2c ie0.5aici
c i

~ln Ks! j
(36)

Q i

~ln a! j
5 20.25a i

2c ie0.5aiciF c id ij 1
c i

~ln a! j
G

Once the sensitivities c i/(ln Ks) j and c i/(ln a) j are eval-
uated, the sensitivities Q i/(ln Ks) j and Q i/(ln a) j can be
calculated using (36). Subsequently, all of the sensitivity ma-
trices of [J(hf)], [J(ha)], [J(sf)], and [J(sa)] can be obtained.

Numerical Examples
As mentioned previously, detailed characterization of a va-

dose zone is a difficult and expensive task. Consequently, few
field experiments have been conducted in the past to provide
sufficient data sets for testing any inverse models, and we have
to rely on numerical experiments to test our geostatistical
inverse approach. The numerical experiments involved steady
state flows in a 7 m 3 7 m vertical plane of a hypothetical
vadose zone. The left and right boundaries of the flow domain
were defined as impermeable, and the lower boundary was
considered as a prescribed head boundary, while the upper
boundary condition varied for different flow scenarios. The
flow domain is discretized uniformly into 35 3 35 finite ele-
ment with dx 5 d y 5 20 cm. Each element is assigned a
saturated hydraulic conductivity value and a pore size distri-
bution coefficient value created from a random field generator
[Gutjahr, 1989] with a modified form of the Whittle spectrum
(spectrum A, anisotropic case [Mizell et al., 1982]). The vari-
ances of ln Ks and ln a are taken as 1.0 and 0.1, respectively,
while the mean value of ln Ks is given as 23.0 and the mean of
ln a is 0.0. The correlation scales for both ln Ks and ln a are set
to be 100 cm and 300 cm in the vertical and horizontal direc-
tions, respectively. The synthesized ln Ks and ln a fields are
shown in the top row of Figure 2. Once the hypothetical vadose
zone is generated, a finite element model [Yeh et al., 1993] is
used to solve the primary flow problem (1) to obtain the pres-
sure head and saturation fields. These ln Ks, ln a, c, and Q
fields are then regarded as the real-world analogues (true
fields) where measurements of these parameters are taken.
Sixteen ln Ks and ln a values (nf 5 na 5 16) were sampled
at a 4 3 4 uniform grid over the entire domain as our primary
information. The secondary information, pressure head values,
was then taken from a 103 10 uniform grid, resulting in a total
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of 100 pressure head measurements (nh 5 100). Similarly, a
total of 81 sampled Q values (ns 5 81) were obtained from a
9 3 9 uniform sampling grid.
Three flow cases, case 1, nonuniform flow A, case 2, non-

uniform flow B, and case 3, uniform flow, associated with
different upper boundary conditions, are considered here to
investigate the usefulness of the primary and secondary infor-
mation on the estimation of ln Ks and ln a fields. In case 1, the
lower boundary is set to be the water table and the central ten
nodes of the upper boundary are constant heads (2100, 2300,
and 2500 cm), while the remaining parts are no-flux bound-
aries. The true soil-water pressure head, flow, and degree of
saturation fields for this case with upper boundary of 2300 cm
pressure head are shown in Figures 1a and 1b. Since the mean
soil-water pressure head varies, the mean gradient changes
with location. As a result, the h and s fields are nonstationary.
In case 2, the boundary conditions are the same as case 1

except that the entire upper boundary is set to be a prescribed
constant head. The mean soil-water pressure head field varies
with depth. It becomes less negative as it approaches the water
table, and the h and s fields are nonstationary. In this case,
three different prescribed head values (2100, 2300, and 2500
cm) for the upper boundary condition are also considered.
The upper boundary conditions in case 3 were set to the

same prescribed head values as the lower boundary conditions.
The same as the previous cases, three different prescribed head
values (2100, 2300, and 2500 cm) were used. The mean flow
in this case is uniform in most of the domain with the hydraulic
gradient of 1 (unit gradient case) except near the left- and
right-hand-side boundaries (no flow). Under this condition the
h and s fields away from the boundaries are essentially station-
ary.
For the above three cases, four different geostatistical esti-

mation approaches are employed to estimate ln Ks and ln a
fields. Approach 1 uses simple kriging with the primary infor-
mation (the ln Ks and ln a measurements) only. In approach 2
our cokriging technique is employed using both the soil-water
pressure information and the primary information. In contrast
to approach 2, approach 3 uses the effective saturation infor-
mation and the primary information. Finally, approach 4 uti-

lizes all the information (measurements of ln Ks, ln a, soil-
water pressure, and effective saturation) to conduct cokriging.
The performance of each approach under different flow

conditions and wetness of the flow field is assessed by two
quantitative measures. The first is the mean square error
(MSE),

MSE5
1
N O

i51

N

~ yoi 2 yei!2 (37)

where yoi and yei are the observed and estimated parameter
values at the ith location, respectively, and N is the total
number of elements for f. The second is the (co)kriged vari-
ance (9), which evaluates the ability of each approach in re-
ducing the prediction variance in the ensemble sense.

Results and Discussion
Figure 2 illustrates the estimated ln Ks and ln a fields of case

1 by the above mentioned four different approaches. Rectan-
gles in Figure 2 represent the sample locations of ln Ks and ln
a, sample locations for h and s are denoted by circles and
squares, respectively. As expected, the kriged ln Ks and ln a
fields based on the primary information only are much
smoother than the true fields, while the fields produced by the
approaches using both primary and secondary information re-
veal some details of the heterogeneity of the real-world analog.
Tables 1, 2, and 3 tabulate the quantitative assessment of the

performance of these four approaches for all the cases. The
first rows of these tables list the values of the mean square
errors and estimation variances for ln Ks and ln a estimates
based on kriging (approach 1). Notice that the result of this
approach does not vary with cases. The percentage of the
improvement due to the use of the geostatistical inverse tech-
nique along with different secondary information is listed in
the other rows. This percentage represents the difference be-
tween the result of approach 1 and the others (approaches 2, 3,
and 4) normalized by the result of approach 1. A positive value
implies improvement and a negative value denotes deteriora-

Figure 1. Distributions of (a) soil-water pressure head in meters, c, and the streamline, and (b) degree of
saturation, Q, in the hypothetical vadose zone.
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tion. These tables show that the geostatistical inverse approach
consistently yields better estimates than kriging. The mean
square errors of the ln Ks and ln a fields by the inverse model
are always smaller than those of kriging. Similarly, the estima-
tion variances of the ln Ks and ln a fields from the inverse
approach are less than those of kriging.
In addition, approach 2 using h measurements improves the

estimation of ln Ks in all cases, but the improvement decreases
as the soil becomes dry. The impact of h measurements on the
estimation of ln a is smaller than that on the ln Ks under wet
conditions; it becomes greater as the soil becomes less satu-
rated. Using the information about the effective saturation, s ,
approach 3 dramatically enhances the estimation of ln a, es-
pecially in the relatively dry soils. Under wet conditions (e.g.,

H 5 2100 cm) the improvement is not significant, because
some areas of the soil profile were saturated and the effective
saturation no longer depends on the value of ln a. The effec-
tiveness of approach 3 on the estimation of ln Ks drops rapidly
as the value of H becomes more negative. For all the cases,
approach 4 using both the primary ( f and a) and secondary (h
and s) information yields much better estimates than the oth-
ers. In general, the flow field (uniform or nonuniform) does
not significantly affect the geostatistical inverse approach.
The above numerical results are directly related to the cross

correlation between the primary and secondary information.
To gain some insights into the behavior of the cross correla-
tion, analytical expressions of the cross-correlation functions
between f and h , and a and h , are derived. Since two-
dimensional analytical results are difficult to obtain, the anal-
ysis assumes that the flow is one-dimensional and under steady
state and unit-mean-gradient conditions, and the spectral/
perturbation approach [Yeh et al., 1985a, b] is used. The ana-
lytical expression for the cross-correlation function between f
and h is

r fh~j! 5
Cfh~j!

@Cff~0!Chh~0!#1/ 2

5
s f

Î~s f
2 1 sa

2H2!
e ~2j/l!F Al

~Al 1 1!
2

j

lG (38)

for j . 0. When j , 0,

Figure 2. Comparison of true ln Ks and ln a fields with those
derived from the four different approaches.

Table 1. Comparison of Results of the Four Approaches
for Case 1

Head,
cm Approach

MSE
ln Ks

MSE
ln a

•
ln Ks

•
ln a

1 ( f, a) 0.3570 0.0454 0.4063 0.0406

H 5 2100 2 ( f, a, h) 45% 35% 41% 10%
3 ( f, a, s) 36% 46% 15% 36%
4 ( f, a, h, s) 65% 71% 50% 47%

H 5 2300 2 ( f, a, h) 19% 46% 31% 18%
3 ( f, a, s) 4% 72% 3% 46%
4 ( f, a, h, s) 34% 83% 47% 50%

H 5 2500 2 ( f, a, h) 10% 41% 26% 21%
3 ( f, a, s) 1% 78% 0.5% 49%
4 ( f, a, h, s) 12% 80% 45% 50%

H is the constant soil-water pressure at the central part of the upper
boundary. MSE, mean standard error.

Table 2. Comparisons of Results of the Four Approaches
for Case 2

Head,
cm Approach

MSE
ln Ks

MSE
ln a

•
ln Ks

•
ln a

1 ( f, a) 0.3570 0.0454 0.4063 0.0406

H 5 2100 2 ( f, a, h) 55% 17% 48% 3%
3 ( f, a, s) 62% 28% 30% 23%
4 ( f, a, h, s) 71% 33% 52% 42%

H 5 2300 2 ( f, a, h) 11% 53% 34% 15%
3 ( f, a, s) 9% 73% 5% 45%
4 ( f, a, h, s) 49% 85% 49% 50%

H 5 2500 2 ( f, a, h) 5% 40% 27% 22%
3 ( f, a, s) 1% 78% 1% 48%
4 ( f, a, h, s) 22% 83% 47% 50%
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Similarly, the cross-correlation function between a and h can
be derived as

rah~j! 5
Cah~j!

@Caa~0!Chh~0!#1/ 2

5
2saH

Î~s f
2 1 sa

2H2!
e ~2j/l!F Al

~Al 1 1!
2

j

lG (40)

if j . 0, and

rah~j! 5
2saH

Î~s f
2 1 sa

2H2!
H FAl~Al 1 1!

~Al 2 1!2
2

uj u~Al 1 1!

l~Al 2 1! G
z e ~2uju/l! 2

4A2l2

~Al 2 1!2~Al 1 1!
e ~2Auju!J (41)

if j , 0, where j is the separation distance (lag), l is the
correlation scale, and sf and sa are the standard deviation of
ln Ks and ln a, respectively.
It is interesting that under unsaturated conditions the abso-

lute value of r fh at any given separation distance decreases as
H becomes more negative ((38) and (39)), implying that the
drier the soil is the smaller the correlation between f and h is.
Subsequently, measurements of h do not improve the estimate
of ln Ks under dry conditions. On the contrary, the absolute
value of rah increases as the soil becomes less saturated ((40
and (41)); measurements of h improve the estimate of ln a. As
H becomes less negative (approaching zero) or the soil is near
saturation, the cross correlation between f and h increases,
while the value of rah drops. As a result, measurements of h
improve the estimate of ln Ks but not ln a. When the soil is
fully saturated (H and A 5 0), the behavior of r fh is then
similar to the two-dimensional result by Mizell et al. [1982],
which is independent of the mean pressure head, and rah
becomes zero.
Formulas similar to (38)–(41) and (39) can also be derived

for r fs and ras to explain the results of approach 3. However,
they are far more complex and will not be presented in this
paper. Plots of cross-correlation functions, rah, r fh, r fs, in x1
and x2 directions are shown in Figure 3 for the two-
dimensional uniform flow case with H 5 2100 cm (solid

curve) and 2500 cm (dashed curve). In general, the cross-
correlation value is higher in the direction of flow ( x2) than in
the direction normal to the flow ( x1). It should be pointed out
that the errors associated with the first-order approximation of
these cross-covariance functions become large when the head
perturbation grows as soil becomes less saturated [Yeh, 1989].
The geostatistical inverse model has its limitations. It may

suffer numerical instability problems similar to those in the
classical inverse models for saturated flow [see Yeh, 1986].
Dietrich and Newsam [1989] pointed out that as the amount of
available data increases and the discretization of the system is
refined, both a numerically ill-conditioned parameter estima-
tion problem and ill-conditioned cokriging equation may oc-
cur; the cokriged transmissivity field may contain some anom-
alies. To avoid this problem, addition of an error term to the
cokriging equation is suggested for stabilizing its numerical
solution. They showed that an addition of such an error term
may result in the loss of information. In our analysis the
amount of primary and secondary information (16(2) 1 100 1
81 5 213) is relatively small compared to the total number of
parameters (1225 2 16(2) 5 1193) to be estimated. The con-
ditional number of the cokriging matrices seems large, but no
anomalies were observed in the estimated ln Ks and ln a fields
for all the cases examined. However, the instability problem
may occur as the amount of information increases.
As mentioned previously, our geostatistical inverse approach

is a linear predictor. Under fully saturated conditions the lin-
ear assumption is valid as long as the variability of the primary
variable is small [see Yeh et al., 1996]. The validity of the
assumption may be further restricted in the case of variably
saturated flow because of the additional nonlinearity in the
unsaturated hydraulic conductivity and water release curves.
Theoretically, it is difficult to quantify the error associated with
this assumption. It is, however, our conjecture that the linear
assumption merely reduces the effectiveness of the secondary
information. If the nonlinearity can be incorporated into our
estimation technique, more detailed spatial distributions of ln
Ks and ln a fields will be revealed. Nevertheless, for depicting
the general spatial patterns of ln Ks and ln a fields, such a
linear predictor can serve as a useful and practical tool, as
demonstrated in our numerical examples.
While results of the numerical experiments appear interest-

ing, application of this geostatistical inverse approach to field

Figure 3. Behaviors of cross-correlation functions in case 3.

Table 3. Comparisons of Results of the Four Approaches
for Case 3

Head,
cm Approach

MSE
ln Ks

MSE
ln a

•
ln Ks

•
ln a

1 ( f, a) 0.3570 0.0454 0.4063 0.0406

H 5 2100 2 ( f, a, h) 57% 10% 46% 4%
3 ( f, a, s) 61% 30% 30% 26%
4 ( f, a, h, s) 77% 41% 52% 43%

H 5 2300 2 ( f, a, h) 6% 50% 26% 23%
3 ( f, a, s) 34% 74% 10% 41%
4 ( f, a, h, s) 62% 85% 47% 50%

H 5 2500 2 ( f, a, h) 217% 53% 14% 35%
3 ( f, a, s) 19% 74% 4% 45%
4 ( f, a, h, s) 35% 78% 43% 52%
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situations remains to be explored. Although many complica-
tions in the field problem are expected, the principle of the
approach is not restricted to the simplified assumptions used in
the analysis. For example, cokriging has been applied to tran-
sient flow problems in fully saturated aquifers [Sun and Yeh,
1992]. Application of our geostatistical inverse method to tran-
sient flow problems in the vadose zone requires the consider-
ation of the Richards equation for transient flow as the primary
problem in the sensitivity analysis. While formulation of the
sensitivity matrix is technically feasible, the actual numerical
computation is however beyond our resources at this moment
[Li and Yeh, 1995]. On the other hand, steady state flow in the
vadose zone exists in many practical field problems (such as
flow under tailings ponds and irrigated fields). In fact, using
controlled irrigation schemes, soil scientists frequently create
steady state flow situations in the field to measure hydraulic
properties of soils and to investigate transport of solutes [e.g.,
Greenholtz et al., 1988; Butters et al., 1989]. Therefore steady
state flow is not an oversimplified assumption.
Errors in the measurement of the primary and secondary

information are expected in the field problems. Differences in
the sample volume of various sampling devices (e.g., tensiom-
eters and neutron probes) also may be considered as part of
the error in the measurement. In our approach, variance terms
representing the error in the measurement of ln Ks, ln a, c,
andQ can be added to the covariances (Cff, Caa, Chh, and Css)
in (7) and (8). Effects of the terms on the estimation have been
discussed by Dietrich and Newsam [1989] for flow through fully
saturated aquifers. Large errors in the measurements will re-
sult in the loss of the information and reduce the effectiveness
of the geostatistical inverse method. This is also true for any
other techniques. In the geostatistical inverse method, evalu-
ation of the covariance functions of f and a may require a
sufficient number of measurements, and it will be affected by
errors in the measurements [see Russo and Jury, 1987a, b]. The
maximum likelihood approach proposed by Kitanidis and Vom-
voris [1983] can be incorporated in our approach to alleviate
this problem.
On the basis of the analysis of field data by Russo and Bouton

[1992] our analysis assumes that f and a are uncorrelated,
although the a in their analysis is not equivalent to the one
used in this paper. The uncorrelated case represents the worst
scenario. A cross correlation between f and a will improve our
estimates even if the knowledge about the parameterized
model of this cross correlation is incomplete. If this model is
perfectly known a priori, measurements of f will greatly im-
prove the estimates of a and vice versa. Subsequently, if c
measurements improve the estimates of f, it also will improve
our estimate of a. By the same token, if Q measurements
improve the estimates of a, it also will improve our estimate of f.
Other models [e.g., van Genuchten, 1980; Brook and Corey,

1964] for the unsaturated hydraulic properties also can be
implemented into our geostatistical approach without difficul-
ties. However, the computational burden will increase signifi-
cantly and is beyond our capacity at this moment. Rapid ad-
vances in computational tools may alleviate this difficulty in the
near future but uncertainty about the representativeness of
these models for field soils over the full range of saturations
remains.
Last, we want to emphasize that our predictive ability of

natural processes in a field will always be limited to their “large
scale” behaviors, even if the field is extensively characterized.
Errors in our conceptual and numerical models and inherent

uncertainties in our input parameters restrict our predictive
ability. For example, Yeh et al. [1995b] used three different
mathematic models to interpret 305 slug tests in a 5 m 3 5 m
field site and obtained three distinctly different sets of hydrau-
lic conductivity values. Nevertheless, all three data sets de-
picted similar patterns of hydraulic heterogeneity at the field
site and in turn produced similar tracer plumes that closely
resemble the large scale behaviors of the observed one. Sub-
sequently, Yeh et al. [1995b] concluded that delineation of
“important” heterogeneities is crucial, and exact characteriza-
tion of heterogeneities at small scales is superfluous since our
measurements always involve some uncertainties that cannot
be quantified. With these facts in mind the geostatistical in-
verse method presented in this paper (although it is our initial
attempt) may be considered a useful and cost-effective site
characterization tool, since it can delineate the general pat-
terns of the hydraulic heterogeneity in the vadose zone.

Conclusions
On the basis of the results of our studies it appears that the

geostatistical inverse approach using both the primary and
secondary information is a promising tool for delineating spa-
tial distribution of unsaturated hydraulic heterogeneities. The
estimates from the inverse approach are better than those
derived from kriging on the basis of primary information only.
Furthermore, our results indicate that the degree of improve-
ment on the estimates using either h or s will depend upon the
wetness of the soil. This characteristic is different from that of
the geostatistical inverse problem in the saturated aquifer.
Finally, the usefulness of this approach under field conditions
remains to be investigated. Carefully designed field experi-
ments are needed.
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