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Abstract
The main purpose of this paper was to compare three approaches for predicting solute transport. The

approaches include: (1) an effective parameter/macrodispersion approach (Gelhar and Axness 1983); (2) a
heterogeneous approach using ordinary kriging based on core samples; and (3) a heterogeneous approach based
on hydraulic tomography. We conducted our comparison in a heterogeneous sandbox aquifer. The aquifer was first
characterized by taking 48 core samples to obtain local-scale hydraulic conductivity (K ). The spatial statistics of
these K values were then used to calculate the effective parameters. These K values and their statistics were also
used for kriging to obtain a heterogeneous K field. In parallel, we performed a hydraulic tomography survey using
hydraulic tests conducted in a dipole fashion with the drawdown data analyzed using the sequential successive
linear estimator code (Yeh and Liu 2000) to obtain a K distribution (or K tomogram). The effective parameters
and the heterogeneous K fields from kriging and hydraulic tomography were used in forward simulations of a
dipole conservative tracer test. The simulated and observed breakthrough curves and their temporal moments
were compared. Results show an improvement in predictions of drawdown behavior and tracer transport when
the K tomogram from hydraulic tomography was used. This suggests that the high-resolution prediction of solute
transport is possible without collecting a large number of small-scale samples to estimate flow and transport
properties that are costly to obtain at the field scale.

Introduction
Improving our ability to predict the temporal and

spatial evolution of solute transport at high resolution in
geologic media has been a topic of great interest over the
past few decades. The recognition of the importance of the
spatial variability of hydraulic conductivity (K) for under-
standing and predicting solute transport in geologic media,
as well as the quantification of associated uncertainty has
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led to the development of various stochastic effective
parameter/macrodispersivity approaches (Gelhar 1993).
These approaches use the spatial statistics of small-scale
K to derive the upscaled effective K for an equiv-
alent homogeneous medium of the true heterogeneous
medium; then, macrodispersivity is applied to account for
the effects of spatial variability of small-scale K on solute
transport that were omitted in the estimation of the effec-
tive K . The stochastic effective parameter approaches
have yielded much optimism about our abilities to pre-
dict solute transport behavior both spatially and tempo-
rally over the past few decades. For example, various
field (MacKay et al. 1986; LeBlanc et al. 1991; Boggs
et al. 1992) and laboratory experiments (Fernàndez-
Garcia et al. 2005 and others) have been conducted to
show the applicability of the effective K and macrodis-
persivity approach (Sudicky 1986; Sudicky et al. 2010).

Limitations of these effective hydraulic parameter/
macrodispersivity approaches for predicting fine-scale
behavior of the tracer plume were demonstrated through
tracer experiments at the MADE (Rehfeldt et al. 1992)
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and Georgetown (Yeh et al. 1995b) sites. In particular,
Mas-Plas et al. (1992) and McCarthy et al. (1996) con-
ducted two-well, forced-gradient tracer experiments in a
coastal sandy aquifer. The results of this tracer test were
modeled using a three-dimensional (3D) flow and trans-
port model (Yeh et al. 1995b). The results revealed that
using the effective K and macrodispersivity can satisfac-
torily produce the bulk behavior of the chloride break-
through observed at the pumping well, but the preferential
migration of tracer can only be captured using the detailed
3D K field obtained from a large number slug tests.
These results corroborate the view of Yeh (1992) that the
upscaled effective K and macrodispersivity approaches
are practical and useful. However, they can yield only
the bulk behavior of solute migration in the subsurface,
and thus serve, at best, as a tool for a first-cut analysis.
In order to meet the resolution of interest, more detailed
information on the spatial distribution of small-scale K

heterogeneity is needed.
Recently, hydraulic tomography has been developed

(Gottlieb and Dietrich 1995; Yeh and Liu 2000; Bohling
et al. 2002; Brauchler et al. 2003; Zhu and Yeh 2005,
2006; Li et al. 2005; Fienen et al. 2008; Castagna and
Bellin 2009; Xiang et al. 2009; Liu and Kitanidis 2011) to
obtain higher resolution K estimates. Because it is a new
technology, laboratory experiments have been conducted
(Liu et al. 2002; Illman et al. 2007, 2008; 2010a, 2010b;
Liu et al. 2007; Yin and Illman 2009; Berg and Illman
2011, Berg and Illman (unpublished data)) to evaluate
hydraulic tomography, while several field experiments
(Bohling et al. 2007; Li et al. 2007; Straface et al. 2007;
Illman et al. 2009; Cardiff et al. 2009; Berg and Illman
(unpublished data)) have also been reported that show that
the technique can image K heterogeneity. Recently, Ni
et al. (2009) conducted numerical simulations to show that
hydraulic tomography is able to capture a sufficient spatial
distribution of K so that detailed, high-resolution, solute
transport behaviors in aquifers can be predicted. However,
these promising results have not been demonstrated to date
either in the laboratory or in the field.

The main objective of this paper is to compare
two widely accepted approaches and one new approach
for predicting solute transport in a controlled sandbox
experiment. The two widely accepted methods are: (1) the
effective parameter approach of Gelhar and Axness
(1983); (2) the heterogeneous approach based on point
samples of K and ordinary kriging; and the new
approach is (3) the heterogeneous approach based on a
K distribution (or K tomogram from now on) obtained
from hydraulic tomography.

Experimental Methods

Sandbox Aquifer Construction
A synthetic heterogeneous aquifer was constructed

in a vertical, laboratory sandbox to evaluate the three
approaches. The sandbox is 193.0 cm in length, 82.6 cm
in height, and has a depth of 10.2 cm. A layered

Figure 1. Photograph of the sandbox showing the synthetic
heterogeneous aquifer in which the dipole cross-hole and
conservative tracer tests were conducted. Large black
numbers indicate layer numbers, solid circles indicate port
locations, and small blue numbers indicate port numbers.
Layer 1 = 20/30; layer 2 = 40/30; layer 3 = F85; layer 4 =
20/40; layer 5 = mix; layer 6 = mix; layer 7 = #12; layer
8 = F32; layer 9 = 20/40; layer 10 = F65; layer 11 = #12;
layer 12 = 16/30; layer 13 = 20/30; layer 14 = F75; layer
15 = 20/40; layer 16 = mix; layer 17 = F85; layer 18 = 20/
30. Note: The layers labeled “mix” consisted of equal
volumes of #14, F75, and 16/30 sands (modified from Illman
et al. 2010a).

deposit was created through the cyclic flux of sediment-
laden water under varying water flow and feed rates of
sediments (Illman et al. 2010a).

To instrument the aquifer, 48 ports, 1.3 cm in
diameter, have been cut out of the stainless steel wall
of the flow cell to allow coring of the aquifer as well
as installation of horizontal wells. The wells, which
penetrate the horizontal thickness of the synthetic aquifer,
were installed after the deposition of the layers. Each
well location is monitored by a pressure transducer, and
can be used for pumping, injection of tracers, or for
sampling. Figure 1 is a photograph of the frontal view of
the synthetic aquifer, showing the interfingering nature
of the deposits with numbers indicating the layers. Port
locations are also shown on this figure. Further details to
this synthetic heterogeneous aquifer and its construction
approach are provided in Illman et al. (2010a).

Pressure measurements were made with 50 Setra
model 209 gauge pressure transducers with a range of
0 to 1 psi, 48 of which measured hydraulic head in the
aquifer. These pressure transducers were installed at each
of the 48 ports in the stainless steel wall of the sandbox.

For this particular study, all boundaries around the
synthetic aquifer were set as no-flow boundaries to
achieve better mass control for the hydraulic and tracer
experiments. This was found to be critical during our ini-
tial studies as our previous sandboxes had constant head
reservoirs which could potentially diminish the tracer sig-
nals via dilution.

Aquifer Characterization Methods

Permeameter Analysis of Core Samples
We first determined the K of the sands from the

48 horizontal cores obtained during the installation of
48 wells. These cores were then attached to a custom-
made constant head permeameter for determination of
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K . Details of the core extraction method and the design
of the constant head permeameter is provided in Craig
(2005). The K values from cores are calculated using
Darcy’s law.

Dipole Hydraulic Tomography Tests
Hydraulic tomography tests were conducted by

pumping water from one well and injecting the pumped
water at another location (dipole hydraulic tomography
tests from now on) and then monitoring changes in
hydraulic heads at other ports in the sandbox. In these
tests, a mass balance of water injected and extracted was
maintained using a peristaltic pump by connecting the
injection and extraction ports in a single loop. Eight pairs
of ports consisting of tests 1 through 8 (e.g., test 1: extrac-
tion at port 2 and injection at port 47, from now on E2/I47
[E=Extraction port and I for injection port]; test 2: E42/I7;
test 3: E4/I45; test 4: E15/I34; test 5: E24/I25; test 6:
E17/I32; test 7: E23/I26; and test 8: E20/I29) were chosen
for these tests (see Figure 1 for port locations). Injec-
tion and pumping rates for all tests averaged 480 mL/min.
Prior to each test, all pressure transducers were calibrated
to ensure accurate data collection. We then collected
hydraulic head data for several minutes in all pressure
transducers to establish a static, initial condition. After
establishment of static conditions, we pumped from each
port using a peristaltic pump, injecting the pumped water
into another port, while taking head measurements at all
48 ports. For each test, pumping continued until the devel-
opment of steady-state conditions, which was determined
by observing the stabilization of all head measurements.
After each dipole test, the pumps were shut down for a
period of time to allow the water in the sandbox to return
to the initial condition. This was repeated for each test.

Dipole Conservative Tracer Test

Description of Dipole Conservative Tracer Test
After the dipole hydraulic tomography tests, we

conducted a dipole tracer test using bromide as a
conservative tracer. Prior to the injection of the tracer,
a dipole flow field was established by injecting tap water
at port 42 at a rate of 372.4 mL/min and extracting at
port 7 at 304 mL/min. A water mass balance was then
achieved by setting 12 sampling lines at a cumulative rate
of 68.4 mL/min. Figure 2 is a schematic diagram showing
the injection, extraction, and sampling ports for the test.

Once steady-state flow conditions were reached
(injection, extraction, and sampling rates were stable and
in equilibrium) a valve in the injection line was switched
from water to a solution containing bromide (Fisher
Scientific, Pittsburgh, Pennsylvania) as the conservative
tracer (151.3 mg/L). Food coloring (70 mL of blue
“Tone’s” Food Coloring) was added to the tracer solution
so that we could observe the movement of the tracer plume
in the sandbox through the glass. The tracer solution
was injected for 10 min and then the injection line was
switched back to tap water. Each of the sampling ports

Figure 2. Schematic diagram showing the injection, extrac-
tion, and sampling ports during the dipole conservative
tracer test.

(and the main extraction port) were sampled over a
period of 5 h to record the movement of the bromide
tracer through the aquifer. Sixty water samples were
collected from each of the 12 sampling lines (plus the
effluent line) during the dipole tracer test for a total
of 780 samples. Upon completion of the experiment,
conservative tracer (Br−) concentrations were determined
using an ion chromatograph (IC) (Dionex ICS 2000,
Dionex, Sunnyvale, California) equipped with an AS40
auto sampler.

Heterogeneity Characterization Methods

Geostatistical Analysis and Kriging of Core K Estimates
Geostatistical analysis of the 48 core K data was

conducted using the Surfer 8 (www.goldensoftware.com).
The exponential variogram model was used to fit the
experimental variograms in both horizontal and vertical
directions, resulting in an anisotropic variogram model.
The variogram parameters for the experimental vari-
ograms to be used in kriging thus included the geometric
mean (KG = 0.08 cm/s), the variance (σ 2

ln K = 0.87) and
the correlation lengths (λx = 60 cm and λz = 20 cm).

We then kriged the core K estimates using this
anisotropic variogram model. The kriged domain was
discretized into 73 vertical elements and 162 horizontal
elements. Figure 3 shows the kriged K field which
delineates some of the major layers, but definitely has

Figure 3. K distribution obtained through kriging of core
scale K data from permeameter analysis.
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a smoothed appearance. Effects of correlation lengths
on the estimate were investigated and were found to be
insignificant due to density of the samples and the small
size of the sandbox.

Estimates of Effective Hydraulic Conductivity
and Macrodispersivity

The stochastic theory of Gelhar and Axness (1983)
provides a methodology for determining large-scale effec-
tive flow and transport parameters (i.e., effective K and
macrodispersivity) from the knowledge of spatial statis-
tics (mean, variance, and correlation scales) describing
the spatial variations of the underlying local-scale Ln(K)

process (from now on, Y = Ln(K)). This theory assumes
that if the local-scale mixing process is sufficient, the flow
and transport processes will reach the ergodic condition,
where the ensemble mean flow and transport behaviors
derived from the stochastic approaches will be equivalent
to those observed in the field.

The relationship between the asymptotic macrodis-
persivity tensor (Aii, i = 1 and 2 ) where 1 and 2 denotes
x and z direction, respectively, and the spatial statis-
tics describing the spatial variability of the K field have
been derived by Gelhar and Axness (1983) under the
assumption of uniform flow. For the case of statistical
anisotropy in the vertical and horizontal directions where
λ1 > λ2 > λ3 (case 2, Gelhar and Axness 1983), the lon-
gitudinal macrodispersivity A11 is given by

A11 = σ 2
Y λ1λ2

/[
ξ 2(λ2

1 sin2 φ + λ2
2 cos2 φ)1/2] (1)

where

ξ = exp[σ 2
Y (0.5 − g22)]

/(
sin2 φ + K22/K11 cos2 φ

)
(2)

and

A11 = σ 2
Y λ1. (3)

Here, the flow integrals, gii (i = 1, 2) are functions of
the correlation lengths defined by Gelhar and Axness
(1983), σ 2

Y is the variance of Y , and φ is the angle in the
horizontal plane between the mean flow direction and the
longitudinal axis of the effective K tensor (K̄ii). It should
be noted that a longitudinal macrodispersion coefficient
calculated using (3) must be augmented by the value
of the local longitudinal dispersion coefficient. When
the mean flow direction coincides with the λ1 direction
(φ = 0o), the transverse macrodispersivity values are zero,
thus indicating that the transverse macrodispersion process
is controlled by local transverse dispersion. The effective
K tensor used earlier is given by

Kii = Kg exp[σ 2
Y (0.5 − gii)]. (4)

Using estimated values for λ1 and λ2 equal to 60
and 20 cm, respectively, and a variance of σ 2

Y = 0.87,
as estimated from the two-dimensional (2D) variogram
analysis, the principal values of the effective K tensor are

given as K11 = 0.096 cm/s and K22 = 0.062 cm/s for
the permeameter estimates of K . The computed value
of the longitudinal macrodispersivity using Equation (3)
equals 52.08 cm on the basis of the geostatistical param-
eters derived from the 2D variogram analysis.

Analysis of Dipole Hydraulic Tomography Tests

Inverse Modeling Approach
The steady-state analysis of dipole hydraulic tomog-

raphy tests was conducted using a sequential successive
linear estimator (SSLE) approach (Yeh and Liu 2000).
To obtain a K tomogram from the available tests, we
solved an inverse problem for steady-state flow condi-
tions. Boundary conditions were set to be no-flow for all
sides. We created a fine grid with the synthetic aquifer
discretized into 11,826 elements and 24,124 nodes with
element dimensions of 1.0 cm × 10.2 cm × 1.0 cm.

Inputs to the inverse model include the mean,
variance and the correlation scales for K , volumetric
discharge (Qn) from each pumping test where n is the
test number, as well as steady-state head data. The mean,
variance, and the correlation scales used here are identical
to those in the kriging analysis.

For the analysis, we used the eight dipole hydraulic
tomography tests (test 1: E2/I47; test 2: E42/I7; test 3:
E4/I45; test 4: E15/I34; test 5: E24/I25; test 6: E17/I32;
test 7: E23/I26; and test 8: E20/I29) and the corresponding
steady-state head observations at the rest of 46 ports
during each test as data sets. The steady-state head value
from each port was obtained by averaging the steady-
state portion of the record. We elected to not use the head
data from the injection and extraction ports from each
test because these ports could be affected by skin effects
(Illman et al. 2007). Further details on preprocessing of
hydraulic head data can be found in Illman et al. (2007,
2008) and Xiang et al. (2009).

Figure 4 is the K tomogram obtained by inverting the
steady-state head data from eight tests. Spatial statistics of
this estimated K tomogram are the geometric mean (KG =
0.15 cm/s), the variance (σ 2

Y = 1.70), and the correlation
lengths (λx = 60 cm and λz = 20 cm).

It is of interest to note that the variance estimated
from SSHT (σ 2

Y = 1.70) is higher than the estimated value
σ 2

Y = 0.87 from the geostatistical analysis of core samples.
These values are in turn higher than those determined
at the Cape Cod site (σ 2

Y = 0.14) (Wolf 1988), and
the CFB Borden site (σ 2

Y = 0.29) (Sudicky 1986), but
is significantly lower than the MADE site (σ 2

Y = 4.50)
(Rehfeldt et al. 1992) or the North Campus Research
Site on the University of Waterloo campus (σ 2

Y = 6.50)
(Alexander et al. 2010).

Results: Dipole Tracer Test
Six photo snapshots of tracer plume evolution

throughout the experiment were taken at t = 12, 27, 62,
100, 175, and 286 min (Figure 5a to 5f). At t = 0 min,
the injection of the tracer solution began and at t =
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Figure 4. K tomogram computed using the steady-state
hydraulic tomography algorithm of Yeh and Liu (2000).

10 min, the injection was switched from tracer solution
to tap water. The snapshots were utilized for qualitative
assessment of the tracer migration.

Figure 5a was taken at t = 12 min, 2 min after the
injection of the tracer solution at port 42 completed in
layer 5 ended. Layer 5 consisted of a mixture of equal
volumes of #14, F75, and 16/30 sands. We notice from
this figure that the tracer solution uniformly distributes in
layer 5. However, this figure also shows that the tracer
solution is preferentially transported along layer 4 (20/40)
which has a K of 2.05 × 10−1cm/s.

At 27 min (Figure 5b), 17 min after the injection was
switched from tracer solution to tap water, we notice that
the blue dye becomes cleared around the injection port.
Figure 5b shows that the tracer continues to move rapidly
through layer 4. The tracer solution also moves laterally
and upwards through layer 8 (F32), layer 9 (20/40), and
into layer 10 (F65).

At 62 min (Figure 5c), we notice that the tracer
solution becomes more diluted through the injection of
tap water. We also notice that the tracer has migrated into
layers 13 (20/30) and 15 (20/40). It also begins to migrate
into layer 17 (F85) which has the lowest K in the aquifer
at 1.35 × 10−2cm/s.

At 100 min (Figure 5d), the tracer appears to break-
through layer 17 (F85) vertically and reaches layer 18
(20/30). Because of the high K of the 20/30 sand

(3.12 × 10−1cm/s), the tracer then rapidly migrates later-
ally through layer 18. The tracer also appears to migrate
rapidly through layer 7 (#12) which has a K of 2.05 ×
10−1cm/s.

By 175 min (Figure 5e), the tracer appears to reach
port 7 which is the extraction port that is completed
in layer 14 (F75). We notice that despite the fact the
tracer solution appears to be diluted, the tracer plume has
reached most parts of the aquifer and all of the layers
between the injection and extraction ports.

By 286 min (Figure 5f), we observe that the tracer
has been removed from the high K layers. However,
there is a noticeable amount of blue dye in low K layers
including: layer 3, layer 8, layer 10, layer 14, and layer 17.
This suggests that the low K layers can contribute to store
tracers for a long period requiring a long period to flush
the tracers out of the synthetic aquifer. Breakthroughs
of the tracer during the experiment are shown in Figure 8.

Prediction of Dipole Tracer Test

Description of Tracer Transport Simulations
A 2D, saturated flow and transport model of the

synthetic aquifer was developed using the finite-element
code VSAFT2 (Yeh et al. 1993). For the effective
parameter approach, we utilized the effective hydraulic
conductivity (Keff) to simulate groundwater flow during
the dipole tracer test, and a longitudinal macrodispersivity
(A11) to simulate the migration of the conservative tracer.
To address the issue that dipole tracer tests conducted
in a bounded aquifer could potentially yield smaller
dispersivity estimates, we also conducted an additional
simulation with macrodispersivity reduced by 30% to
examine its sensitivity to tracer transport. We also
simulated groundwater flow and plume migration using
the kriged K field and the K tomogram. For the transport
simulation using the kriged K field and the K tomogram,
we set the dispersivity value equal to zero, while the
effective porosity was set to 0.36 for all cases. In total,
three different cases were considered.

(a) (b) (c)

(d) (e) (f)

Figure 5. Photographs of sandbox during the tracer test at various times: (a) t = 12 min; (b) t = 27 min; (c) t = 62 min;
(d) t = 100 min; (e) t = 175 min; and (f) t = 286 min. The solid line represents the edges of the dyed tracer plume. The
dashed lines are approximations of the extent of the tracer plume. Note: at t = 175 and t = 286, most of the dye has left the
system, however, some dye is trapped around the wells ever after the tracer has been flush through the system giving the
tank a blue-green tinge at these times.
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(a) (b) (c)

Figure 6. Simulated vs. observed drawdowns at 48 ports during the dipole tracer test. Simulated values were computed using:
(a) Keff from Gelhar and Axness (1983) solution with statistics of permeameter analysis of core samples; (b) kriged K field;
and (c) K tomogram.

For all cases, flow conditions were established by
simulating steady-state flow with injection, extraction, and
sampling ports. A tracer solution with a bromide con-
centration of 151.3 mg/L is then injected for 10 min and
solute transport is simulated under transient conditions.
As in the experiment, all boundaries are set as no-flow
and no-flux boundaries.

Groundwater Flow Results
Figure 6a shows scatter plots of simulated vs.

observed steady-state drawdown values during the dipole
tracer test at the sampling ports using the Keff based on the
Gelhar and Axness (1983) formula. Likewise, Figure 6b
shows the same when the kriged K field is used while
Figure 6c illustrates the predicted vs. observed draw-
downs using the K tomogram. These comparisons show
that the Keff and kriged K field both yield biased pre-
dictions of drawdowns at various locations in comparison
to that based on the K tomogram. In addition, predicted
drawdown based on the Keff and that based on kriged K

field exhibit greater bias and scattering. In contrast, the K

tomogram yields improved results.

Dipole Tracer Test Simulation Results
Figure 7a shows the spatial distribution of tracer

concentrations at various times using the Keff and
macrodispersivity estimates. The results reveal that the
concentration distribution evolves quite uniformly with
significant spreading of the tracer concentration. Not
shown here are results of simulations in which we reduced
the macrodispersivity by 30%. As expected, reducing
macrodispersivity by 30% did not significantly influence
our results due to the dipole flow field.

Figure 7b is the result using the kriged K field
while Figure 7c is the result based on the K tomo-
gram. We note that dispersivity was set to zero for both
cases. Both Figure 7b and 7c show that due to the map-
ping of the heterogeneity, the concentration distributions
are less smooth in comparison to the effective parame-
ter case (Figure 7a). These figures reveal a much more
heterogeneous distribution of tracer concentrations with

tracers following preferential pathways with hydraulic
tomography providing a more heterogeneous concentra-
tion distribution in comparison to kriging.

We next compare the results from Figure 7a through
7c with the tracer snapshots in Figure 5a through 5c. The
time of the snapshot and that of the transport simula-
tion results are not exactly coincident, but the two figures
nonetheless can be compared qualitatively. The compari-
son shows that the migration of the tracer represented by
the migration of the dye is better represented by Figure 7b
and best represented by Figure 7c. This is expected as
the transport simulations involving effective parameters
do not consider the K heterogeneity, while kriging and
hydraulic tomography yields increasingly realistic distri-
butions of K heterogeneity that can better represent the
migration of tracers.

While results are not presented here, we also exam-
ined the impact of porosity (φ) heterogeneity on the tracer
transport. Using grain size information and the estimated
K values, a heterogeneous φ field was created. Using both
the heterogeneous K from hydraulic tomography and φ

together showed a marginal improvement in tracer simu-
lation. However, as K varied over a much greater range
than φ, it was found to be significantly more important in
determining the migration of the tracer.

Simulated vs. Observed Breakthrough Curves
We next make a direct comparison of the break-

through curves obtained through numerical simulations
and the actual tracer data (Figure 8a to 8c). The matches
of the breakthrough curves (Figure 8a) obtained from
ports (30, 35, and 47) close to the injection port are quite
good for all cases. In particular, the arrival time, peak
concentrations, and time for tracer concentrations to reach
background levels is quite consistent for all cases.

Differences in the quality of matches begin to emerge
when the breakthrough curves from the intermediate
distance ports (10, 12, 22, 27, 37, and 39) are examined
(Figure 8b). We observe that case 1 (effective parameters)
consistently underpredicts the peak concentration at all

426 W.A. Illman et al. GROUND WATER 50, no. 3: 421–431 NGWA.org



(a)

(b)

(c)

Figure 7. Concentration distributions from tracer transport simulation with: (a) Keff and A11 computed using Gelhar and
Axness (1983) solution with statistics of K from the permeameter analysis of core samples (case 1); (b) kriged K field (case
2); and (c) K tomogram (case 3). Snapshots of concentration distributions are from (i) t = 10 min, (ii) t = 30 min, (iii)
t = 60 min, (iv) t = 100 min, (v) t = 170 min, and (vi) t = 290 min for all cases.

ports in this category and show an earlier arrival of tracers.
In contrast, cases 2 (kriging) and 3 (K tomogram) show
a marked improvement in the quality of the fits with case
3 performing the best visually, on the average.

Examination of the furthest ports (2, 14, 19) from the
injection port (Figure 8c) shows mixed results. In general,
we observe that case 3 performs better than cases 1 and 2
in terms of better predicting the peak concentrations and
arrival times of tracers. However, we also note that the
matches are far from perfect.

At the extraction port (7), none of the three
approaches yields a perfect prediction (Figure 8c), how-
ever, we find case 3 captures the first 2 peaks that arrive
at different times. Case 1, on the other hand, because it
is based on the effective parameter approach, cannot cap-
ture the multiple peak behavior. Likewise, case 2 with the
smoother K field does not capture this behavior. To com-
pare results quantitatively, we next compute and compare
the temporal moments.

Temporal Moment Analysis
The temporal moment analysis was used to charac-

terize the breakthrough data at all wells. The nth temporal
moments (Mn) of concentration (C) at location (x, y) at
time (t) are given by:

Mn =
∞∫

0

tnC(x, y, t)dt (5)

where t is time, C(xi, t) is tracer concentration. One can
compute the zeroth (M0), first (M1), and second (M2)

temporal moments using the moment generating function
(Equation 5) by setting n = 0, 1, and 2, respectively. The
temporal moments were obtained through numerical inte-
gration of the breakthrough data using the trapezoidal rule.

The total mass of solute passing through the sandbox
at each sampling point is obtained by computing the
M0 from the breakthrough curves. The first normalized
moment of breakthrough curves at each sampling ports
were used to estimate the mean arrival time of the center
of bromide mass (μ):

μ = M1

M0
. (6)

The variance (σ 2) of the breakthrough curve is then
calculated by

σ 2 = M2

M0
−

(
M1

M0

)2

. (7)

In general, the σ 2 represents the spread of the concentra-
tion distribution and is influenced by mechanical disper-
sion and molecular diffusion.

Figure 9a to 9c shows the M0, μ, and σ 2 computed
from the temporal moment analyses of simulated and
observed breakthrough curves. In particular, Figure 9a
reveals the estimates of M0 at these observation ports are,
on average, higher for the simulated breakthrough curves
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(a)

(b)

(c)

Figure 8. Breakthrough curves from the dipole tracer test and corresponding match of forward simulations (a) near the
injection port, (b) at intermediate distances, and (c) at large distances from the injection port.

for case 1. Figure 9a also indicates that when the het-
erogeneity in K is considered (i.e., cases 2 and 3), the
estimation of the total mass at a given sampling point
improves. This suggests that the heterogeneity estimated

by kriging and hydraulic tomography appears to capture
the flow paths of the tracer reaching these sampling ports.

The arrival time of the center of mass (μ) for the three
cases is plotted in Figure 9b. Results of the three cases
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(a) (b) (c)

Figure 9. (a) Total mass (M0), (b) mean arrival time (μ), and (c) variance (σ 2) of the breakthrough curves at each sampling
port for cases 1–3.

show that the arrival times of simulated breakthroughs for
the ports close to the injection port are similar to those
observed. At ports that are far away from the injection
point, the discrepancy between the simulated and observed
values increases. While the scatter is centered around the
1:1 line for all cases, case 3 shows less scatter. There are
two sampling points 2 and 37 that causes the simulated
vs. observed relationship to be biased at larger times.
These two ports are at a large travel distance and near
boundaries where there are no observation points hence
making the estimated K tomogram in these areas more
uncertain. If we choose to disregard these two points,
then the relationship between the simulated and observed
values becomes stronger. This suggests that the mapping
of heterogeneity via hydraulic tomography yields more
accurate estimates of the arrival times of the center of
mass for this synthetic aquifer.

The σ 2 of the breakthrough curves was also calcu-
lated at each sampling point and plotted on Figure 9c. The
result suggests that the approach based on effective param-
eters over predicts the temporal spreading of the plume
which is also evident in Figure 7a. The σ 2 estimates at
the extraction point (port 47) for case 1 are, however, sat-
isfactory, suggesting that an integrative behavior (such as
breakthrough at the extraction well) can be predicted by
low-spatial resolution approach. When we examine case
2 in which the kriged K field is used, the bias in the
σ 2 estimates diminishes at sampling intervals close to
the injection well. In contrast, a remarkable improvement
is seen in case 3 in which both the bias and scatter dimin-
ish considerably. This suggests that hydraulic tomography
can adequately map the heterogeneity, which leads to a
higher resolution prediction of the tracer migration. These
results are consistent with those obtained by Yeh et al.
(1995b) at Georgetown site, where detailed heterogeneity
was characterized using 308 slug tests.

Discussion and Summary
While our finding that better characterization of

heterogeneity leads to better prediction of the flow
and solute transport is expected, our study substan-
tiates and quantifies this simple fact. Specifically, we

showed that the effective K approach resulted in biased
predictions of drawdowns during the dipole tracer test.
In conjunction with the estimated macrodispersivity,
it predicted a general spatial pattern of the observed
tracer migration at low resolutions. More importantly,
we demonstrated that the K tomogram estimated from
hydraulic tomography yielded an excellent prediction of
drawdowns and better tracer distribution patterns during
the dipole tracer test than the effective K approach and
the approach based on kriging with core samples.

To our knowledge, formulae for effective K and
macrodispersivity do not exist for a dipole tracer test. We
therefore adopt Gelhar and Axness (1983)’s formulae to
approximate the effective parameters which assumes that
transport takes place under uniform flow conditions. For
a dipole flow condition, macrodispersivity is expected to
be smaller due to converging/diverging flow. Analysis of
our transport predictions by reducing macrodispersivity by
30% however did not alter our results. This is attributed
to the fact that the arrival time, peak concentration, and
time are mainly controlled by convective flow during the
dipole experiment.

There are numerous approaches available for esti-
mating K spatial distribution. One popular approach
is geostatistics (i.e., kriging) using point measurements
of K as we did in this study. If other measurements
such as head, concentration, or other related proper-
ties are available, cokriging and other data fusion tech-
niques (such as hydraulic tomography) can be used to
improve the estimate based on K measurements alone.
For example, Yeh and Zhang (1996), Li and Yeh (1999),
and others investigated usefulness of moisture content,
tracer, and head measurements for characterizing vadose
zones and aquifers using cokriging.

Over the past decade, hydraulic tomography has
proved to be a matured technology, but is not widely
accepted and understood. As a matter of fact, hydraulic
tomography is built upon data fusion concept, and its
algorithm (SSLE) for analysis is an extension of kriging or
cokriging. Kriging interpolates and extrapolates measured
K values to other locations according to variogram
(spatial statistical correlation structure) of K’s. Cokriging
utilizes both measured K values and observed state
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variables (e.g., head) to estimate K at other locations.
During the estimation, not only does cokriging takes
advantage of the variogram of K as does in kriging but
also uses spatial relationship between K and the head
field (i.e., considers flow process). Therefore, cokriging
in general yield better results than kriging. On the other
hand, SSLE overcomes the linear relationship between
head and K assumption employed in cokriging (Yeh et al.
1996). It maximizes the information of the measured
head data about the K , which may be called an iterative
cokriging-like technique (Yeh et al. 1995a). Hydraulic
tomography is superior to all these methods because it
creates and collects head data of different pumping tests;
these data sets have nonredundant information about the
K distribution; hydraulic tomography then employs SSLE
to estimate the spatially distributed K field.

Without any surprise, both qualitative and quanti-
tative evaluations of predictions of the tracer experi-
ment revealed that mapping detailed heterogeneity using
either kriging/core samples or hydraulic tomography can
improve the prediction, but hydraulic tomography yielded
a better prediction. Nevertheless, we must emphasize
that the K tomogram from hydraulic tomography did
not capture all the details of tracer breakthrough. This
result agrees with the findings by Yeh et al. (1995b) and
Konikow (2011) that the prediction of the tracer break-
through at individual locations in a field is a difficult
task.

In comparison with results of the work by Ni et al.
(2009), which evaluated these methods for predicting flow
and transport under uniform flow using error-free numeri-
cal experiments, we attribute the discrepancy in simulated
vs. observed breakthrough curves and temporal moments
to several factors. They are: (1) the effects of noise in
head measurements used in hydraulic tomography, (2) the
diverging and converging flow fields forcing tracers to
migrate through areas near the impermeable boundaries
of the sandbox, where heterogeneity cannot be mapped
satisfactorily using hydraulic tomography due to the lack
of monitoring points in these areas, and (3) the less dif-
fusive nature of the tracer which demands a much higher
resolution mapping of the K field.

These shortcomings may be overcome by deploying a
denser monitoring network for the hydraulic tomography
tests or through the joint inversion of hydraulic tomogra-
phy and tracer test data (Yeh and Zhu 2007, Li and Yeh
1999; Illman et al. 2010b). In addition, conditioning of the
K tomogram using accurate point scale K data and geo-
physical surveys may potentially useful. However, this is
beyond the scope of the current manuscript, but is a topic
for further research.

Finally, our study suggests that hydraulic tomography
can improve our predictions of solute transport without
collecting a large number of small-scale samples to
estimate effective parameters or ascribing dispersivity
estimates that are costly to obtain at the field scale through
tracer tests. Our results support the call for a change in
the way we collect and analyze data for characterizing
aquifers (Yeh and Lee 2007).
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