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[1] Transient hydraulic tomography (THT) is a potentially cost-effective and high-
resolution technique for mapping spatial distributions of the hydraulic conductivity and
specific storage in aquifers. Interpretation of abundant well hydrographs of a THT survey,
however, is a computational challenge. We take on this challenge by developing an
estimation approach that utilizes the zeroth and first temporal moments of well
hydrographs, instead of drawdown itself. The governing equations for the temporal
moments are Poisson’s equations. These equations demand less computational resources
as opposed to the parabolic equation that governs drawdown evolution. Likewise, the
adjoint equations for evaluating sensitivities of the moments for parameter estimation also
take the same forms. Therefore a temporal moment approach is expected to expedite the
interpretation of THT surveys. On the basis of this premise we extend our sequential
successive linear estimator to use the zeroth moment and characteristic time of the
drawdown-recovery data generated by THT surveys. We subsequently investigate
computational efficiency and accuracy of the moment approach. Results of the
investigation show that the temporal moment approach yields results similar to those from
the approach that uses transient heads but at significantly less computational costs.
Limitations using temporal moments are discussed subsequently.
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1. Introduction

[2] Multiscale heterogeneity of geologic media is a rule
rather than the exception. The knowledge of detailed spatial
distributions of hydraulic properties is imperative to predict
water and solute movement in the subsurface at high resolu-
tion [e.g., Yeh, 1992, 1998]. Traditional aquifer tests (e.g.,
pumping and slug tests) have been widely employed for
estimating hydraulic properties of the subsurface for the last
few decades. Besides their costly installation and invasive
natures,Beckie andHarvey [2002] reported that slug tests can
yield dubious estimates of the storage coefficient of aquifers.
Validity of classical analysis for aquifer tests was also
questioned byWu et al. [2005]. They reported that the storage
coefficient, S, value obtained from the traditional Theis
analysis primarily represents a weighted average of S values
over the region between the pumping and observation wells.
In contrast to the S estimate, the transmissivity, T, estimate is a
weighted average of all T values in the entire domain with
relatively high weights near the pumping well and the
observation well. In concordance with the finding by Oliver
[1993],Wu et al. [2005] concluded that the T estimate can be
influenced by any large-sized or strong anomaly within the
cone of depression. Thus interpretation of the meaning of T
estimates can be highly uncertain. As a result, previous
assessments of transmissivity distributions of aquifers may
be subject to serious doubt.

[3] Hydraulic tomography [Gottlieb and Dietrich, 1995;
Yeh and Liu, 2000; Liu et al., 2002; Bohling et al., 2002;
Zhu and Yeh, 2005], based on the computerized axial
tomography (CAT) scan concept of medical sciences, is
potentially a viable technology for characterizing detailed
spatial distributions of the hydraulic properties. Hydraulic
tomography, in a simple term, is a series of cross-well
interference tests. More precisely, hydraulic tomography
involves stressing an aquifer by pumping water from or
injecting water into a well, and monitoring the aquifer’s
response at other wells. A set of stress and response data
yields an independent set of equations. Sequentially switch-
ing the pumping or injection location, without installing
additional wells, results in a large number of aquifer
responses induced by the stresses at different locations
and thus a large number of independent sets of equations.
This large number of sets of equations makes the inverse
problem (i.e., using aquifer stress and response relation to
estimate the spatial distribution of hydraulic parameters)
better posed, and the subsequent estimates approach reality.
[4] Interpretation of hydraulic tomography surveys how-

ever is a numerical challenge. The large number of well
hydrographs generated during tomography often leads to
information overload, substantial computational burdens,
and numerical instabilities [Hughson and Yeh, 2000]. To
overcome these difficulties, Yeh and Liu [2000] developed a
sequential successive linear estimator (SSLE) approach.
This approach eases the computational burdens by sequen-
tially including information obtained from different pump-
ing tests; it resolves the nonuniqueness issue by providing
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an unbiased mean of an abstracted stochastic parameter
rather than the actual parameter. That is, it conceptualizes
hydraulic parameter fields as spatial stochastic processes
and seeks their conditional effective parameter distributions.
The conditional effective parameters are conditioned on the
data obtained from and governing physical principles of
hydraulic tomography, as well as our prior knowledge of the
geologic structure, and directly measured parameter values
(such as from slug tests, or core samples). The SSLE
approach in essence is the Bayesian formalism. Sand box
experiments by Liu et al. [2002] and W. A. Illman et al.
(Steady-state hydraulic tomography in a laboratory aquifer
with deterministic heterogeneity: Multiscale validation of
hydraulic conductivity tomograms, submitted to Water
Resources Research, 2005) proved that the combination of
hydraulic tomography and SSLE is a viable, cost-effective
technique for delineating heterogeneity using a limited
number of invasive observations. The work by Yeh and Liu
[2000], nonetheless, is limited to steady state flow conditions,
whichmay occur only under special field conditions. Because
of this restriction their method ignores transient head data
before flow reaches steady state conditions.
[5] Several researchers have investigated THT. Bohling et

al. [2002] exploited the steady shape flow regime of
transient flow data to interpret tomographic surveys. Similar
to Vasco et al. [2000], Brauchler et al. [2003] developed a
method that uses the travel time of a pneumatic pressure
pulse to estimate air diffusivity of fractured rocks. As in
X-ray tomography, their approach relies on the assumption
that the pressure pulse travels along a straight line or a
curved path. Thus an analytical solution can be derived for
the propagation of the pressure pulse between a source and
a pressure sensor. Many pairs of sources and sensors yield a
system of one-dimensional analytical equations. A least
squares based inverse procedure developed for seismic
tomography can then be applied to the system of equations
to estimate the diffusivity distribution. The ray approach
avoids complications involved in numerical formulation of
the three-dimensional forward and inverse problems, but it
ignores interaction between adjacent ray paths and possible
boundary effects. Consequently, their method requires an
extensive number of iterations and pairs of source/sensor
data to achieve a comparable resolution to that achieved
from inverting a three-dimensional model. Vesselinov et al.
[2001] applied an optimization technique and geostatistics
to interpret pneumatic cross-borehole tests in fractured
rocks.
[6] Recently, Zhu and Yeh [2005] extended the SSLE

approach to THT to estimate both spatially varying hydrau-
lic conductivity and specific storage fields in 3-D random
media. They demonstrated that it is possible to obtain
detailed hydraulic conductivity and specific storage fields
of aquifers using few wells with THT surveys. However, as
the size of the field site to be characterized increases and the
demands of resolution increases, the computational burden
increases significantly. A computationally efficient algo-
rithm therefore must be developed for speedy analysis of
the THT surveys. For basin-scale naturally recurrent tomo-
graphic surveys (such as river stage tomography, Yeh et al.
[2004]), development of such a technology is imperative.
[7] In this study, inspired by the moment generating

function approach by Harvey and Gorelick [1995], we

develop the temporal moment generation equation for
impulse pumping tests, similar to the recent work by Li et
al. [2005]. While Li et al. [2005] focus on applying
temporal moments to a single impulse pumping test, we
apply the temporal moments to transient hydraulic tomog-
raphy. Specifically, we incorporate the zeroth and first
temporal moments of well hydrographs into the SSLE
inverse approach [Yeh and Liu, 2000] for THT. In addition,
we implement a loop iteration scheme [Zhu and Yeh, 2005]
to avoid the effects of sequential addition of moment
information. By directly comparing the estimation using
the temporal moments with that using transient heads, we
thereafter investigate the temporal moment approach in
terms of computational efficiency and accuracy of estimation.
Last, limitations of the moment approach are discussed.

2. Methodology

2.1. Derivation of Moment Equations

[8] Groundwater flow induced by pumping in three-
dimensional, saturated, heterogeneous geologic media is
assumed to be described by the following equation:

r � K xð ÞrH½ � þ Q xp; t
� �

¼ SS xð Þ @H
@t

ð1Þ

subject to boundary conditions:

H G1
j ¼ H1 and K xð ÞrH½ � � n G2

j ¼ q;

and initial condition:

H xð Þ t¼0 ¼ H0 xð Þj ð2Þ

In equation (1), H is the total head (L), x is the spatial
coordinate (x = {x, y, z}, (L), and z represents the vertical
coordinate and is positive upward), Q(xp, t) is the pumping
rate per unit volume at location xp, K(x) is the saturated
hydraulic conductivity (L/T), and Ss(x) is the specific
storage (L
1). In equation (2), H1 is the prescribed total
head at Dirichlet boundary G1, q is the specific flux (L/T)
at Neumann boundary G2, n is a unit vector normal to
the boundary, and H0(x) represents the initial total head
distribution under a steady state condition.
[9] If we define drawdown as s = H 
 H0, then the

drawdown form of the three-dimensional saturated flow
equation is given by

r � K xð Þrs½ � þ r � K xð ÞrH0½ � þ Q xp; t
� �

¼ Ss xð Þ @s
@t

ð3Þ

with boundary and initial conditions:

s G1
j ¼ 0; K xð Þrs½ � � n G2

j ¼ q
 K � rH0; and s t¼0 ¼ 0j : ð4Þ

In equation (3), r � [K(x)rH0] represents the divergence of
the regional flow prior to pumping tests and is zero as long
as it is steady. Applying a moment generating function
approach [Harvey and Gorelick, 1995] to the drawdown-
time data, the nth temporal moments of drawdown at
location xi are given by

Mn xið Þ ¼
Z 1

0

tns xi; tð Þdt ð5Þ
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where Mn(xi) is the nth temporal moment of drawdown at
location xi. Notice that Y = M1/M0 is a characteristic time
depicting the arrival time of the center of the area under a
drawdown-recovery curve. Multiplying equation (3) with tn

and integrating over time from 0 to infinite givesZ 1

0

tnr � K xð Þrs½ �dt þ
Z 1

0

tnr � K xð ÞrH0½ �dt

þ
Z 1

0

tnQ xp; t
� �

dt ¼
Z 1

0

tnSs xð Þ @s
@t

dt ð6Þ

Substituting equation (5) into equation (6), assuming that
the regional flow is steady (i.e., the second term on the left-
hand side of equation (6) is zero), and that the duration of
pumping at location xp with a constant rate of Q is t, and
using integration by parts for the right-hand term, we obtain
the moment equation:

r � K xð ÞrMn½ � þ Q xp
� � tnþ1

nþ 1
¼ Ss xð Þstn t¼1

t¼0

 Ss xð ÞnMn
1

����
ð7Þ

Applying the same procedure to equation (4), the boundary
conditions for equation (7) become

Mn G1
j ¼ 0 and K xð Þ @Mn

@xi
� n G2

j ¼
Z 1

0

tn q
 KrH0ð Þdt ð8Þ

Letting n = 0 in equation (7) leads to the zeroth moment
equation

r � K xð ÞrM0½ � þ Q xp
� �

t ¼ SS xð Þs t¼1
t¼0

�� ð9Þ

The zeroth moment represents the area under the draw-
down-recovery curve. The solution to equation (9) requires
our knowledge of drawdown at every point in the solution
domain at both initial and final time. While drawdown at t =
0 is generally zero everywhere, the spatial distribution of the
drawdown in a real-world aquifer after pumping starts is
difficult to know with a limited number of wells and current
technologies. The final drawdown throughout the aquifer
however will be zero after pumping is stopped and enough
time is allowed for aquifer to recover. If this is the case,
then, equation (9) becomes

r � K xð ÞrM0½ � þ Q xp
� �

t ¼ 0 ð10Þ

The associated boundary conditions are

M0 G1
j ¼ 0 and K xð Þ @M0

@xi
� n G2

j ¼
Z 1

0

q
 KrH0ð Þdt ð11Þ

Now, setting n = 1 in equation (7), the governing equation
for the first moment is

r � K xð ÞrM1½ � þ Q xp
� � t2

2
þ SS xð ÞM0 ¼ 0 ð12Þ

The associated boundary conditions are

M1 G1
j ¼ 0 and K xð Þ @M1

@x
� n G2

j ¼
Z 1

0

t q
 KrH0ð Þdt ð13Þ

Equations (10), (11), (12), and (13) are essentially the
governing equations for the zeroth and first temporal
moments of drawdown anywhere in the aquifer induced by
a single pumping during a hydraulic tomographic survey.
They are identical to those equations developed by Li et al.
[2005] for an aquifer test that involves one pumping location
in an aquifer. By using the moments of the drawdown, a
parabolic equation (i.e., equation (1)) has been transformed to
two Poisson’s equations (equations (10) and (12)). In other
words, the governing transient groundwater flow equation is
replaced by two steady equationswhich can be solved directly
without using any time march scheme.

2.2. Sequential Inverse Algorithm

[10] Our estimation technique using drawdown moments
from hydraulic tomography is based on the sequential
successive linear estimator (SSLE) developed by Yeh et
al. [1996], Zhang and Yeh [1997], Li and Yeh [1999],
Hughson and Yeh [2000], Vargas-Guzman and Yeh [1999,
2002], Yeh and Liu [2000], Liu and Yeh [2004], and, in
particular, Zhu and Yeh [2005]. We first assume that the
natural logs of saturated hydraulic conductivity and specific
storage are stochastic processes. One advantage of using
the natural logarithm is that it avoids negative values of
the parameters during the estimation. We then assume lnK =
K + f and lnSs = S + b, where ln denotes natural logarithm;
K and S are mean values; f and b denote the perturbations.
Similarly, the zeroth moment of drawdown induced by a
pumping test during transient hydraulic tomography can be
decomposed into two parts: M0 = M0 + m0, where M0 is the
mean and m0 is the perturbation. The characteristic time Y
can also be decomposed as Y = Y + y, where Y is the mean
and y is the perturbation. Expanding the zeroth moment and
characteristic time in a Taylor series about the mean values
of parameters, and neglecting second- and higher-order
terms, the perturbations at location i can be expressed as:

m0i ¼ fj
@M0i

@ lnKj
K;S

��� ¼ fJM0 lnK yi ¼ fj
@Yi

@ lnKj
K;S

��� þ bj
@Yi

@ ln SSj
K;S

���
¼ fJY lnK þ bJY ln SS ð14Þ

where a repeated subscript implies summation of its range.
In equation (14), fj and bj are perturbation of lnK and lnSS at
location j and j = 1, . . .N, which is the total number of
elements in the domain, and they are denoted by matrices f
and b. The sensitivity matrices of M0 and Y at location i
with respect to lnK and lnSS perturbation at location j are

given by JM0 lnK ¼ @M0i

@ lnKj
, JYlnK = @Yi

@ lnKj
and JYlnS = @Yi

@ ln Sj
.

Assuming K and Ss are independent from each other, the
covariances of m0 and y, and the cross covariance between
m0 and f, between y and f, and between y and b can be
obtained by a first-order analysis and is expressed as

Rm0m0
xi; xj
� �

¼ JM0 lnKRff xi; xj
� �

JTM0 lnK

Ryy xi; xj
� �

¼ JY lnKRff xi; xj
� �

JTY lnK þ JY ln SSRbb xi; xj
� �

JTY ln SS

Rm0f xi; xj
� �

¼ JM0 lnKRff xi; xj
� �

Ryb xi; xj
� �

¼ JY ln SSRbb xi; xj
� �

Ryf xi; xj
� �

¼ JY lnKRff xi; xj
� �

ð15Þ
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where Rff(xi, xj) and Rbb(xi, xj) are covariance matrices of f

and b between location xi and xj, respectively. Rm0 f
(xi, xj ),

Ryf (xi, xj), Ryb(xi, xj) are cross-covariance matrices

between m0 and f, y and f, and y and b, respectively.

Rm0m0
(xi, xj) and Ryy(xi, xj) are covariance matrices of m0

and y, respectively. The superscript T represents the

transpose of the matrix.
[11] The estimate of f at location xi, f̂ (xi), is then derived

using a linear multivariate estimator:

f̂ xið Þ ¼ ajfj*þ lkm0k* þ b‘y‘* j ¼ 1; . . .Nf ; k ¼ 1; . . .Nm0
;

‘ ¼ 1; . . .Ny ð16Þ

where aj, lk and bl are weights. Nf, Nm0
and Ny are the total

number of f, zeroth moment, and characteristic time mea-
surements, respectively. Measurements for hydraulic con-
ductivity, zeroth moment, and characteristic time are
denoted by f *, m*0, and y*, respectively. Similarly, the
estimate of b at location xi, b̂(xi), is given by

b̂ xið Þ ¼ enbn*þ m‘y‘* n ¼ 1; . . .Nb; ‘ ¼ 1; . . .Ny ð17Þ

where en and mk are weights, and Nb is the total number of
b*’s, which are specific storage measurements. All weights
are evaluated based on the covariance and cross covariances
(equation (15)) [see Hughson and Yeh, 2000]. Our inverse
algorithm then successively updates parameter estimates
and residual covariances and sequentially includes data sets
from different pumping tests. The updating and sequentially
inclusion procedures are not presented here. Detailed deri-
vations are described by Hughson and Yeh [2000] for
inversion of unsaturated flow, Yeh and Liu [2000] for
hydraulic tomography, and Yeh et al. [2002] for electrical
resistivity tomography.

2.3. Evaluation of Moment Sensitivities

[12] The SSLE approach requires evaluation of the sen-
sitivity matrices. To reduce the computational cost, these
sensitivities are evaluated by an adjoint state method [Sykes
et al., 1985; Sun and Yeh, 1992]. A detailed derivation of
the sensitivities is given at Appendix A. The sensitivity of
M0 to lnK is given by

@Mk
0

@ lnK‘
¼

Z
W


 @f0
*

@x
K‘

@M0

@x
dW: ð18Þ

The sensitivity of M1 to lnK is given by

@Mk
1

@ lnK‘
¼

Z
W


 @f0
*

@x
K‘

@M0

@x

 @f1

*

@x
K‘

@M1

@x

� �
dW; ð19Þ

and the sensitivity of M1 to lnSS is given as

@Mk
1

@ ln SS‘
¼

Z
W

f1
*M0Ss‘dW; ð20Þ

where f*0 and f*1 are arbitrary functions which are defined
in Appendix A; the superscript k denotes the observation at
location xk and the subscript ‘ denotes the location of the
parameter in the domain W. To evaluate Equations (18), the

arbitrary functions f*0 must be known a priori. f*0 is
obtained by solving the adjoint equation (A16). On the
other hand, to calculate the sensitivity of M1 to lnK or lnSs
(Equations (19) and (20)), the adjoint equations (A9) and
(A10) are solved sequentially. That is, we derive f*1 first
and then use it in equation (A10) to obtain f*0.
[13] Both moment equation (10) and equation (12) are

Poisson’s equations, which need to be solved only once, as
opposed to the parabolic equation of the governing equation
for transient groundwater flow, which must be solved for
each time step. As a consequence, significant computational
costs can be reduced during evaluation of sensitivity matri-
ces. Consider that the hydrograph at an observation well has
been recorded at a 1 s interval for a period of 100 s during
an impulse pumping test. Suppose that this hydrograph is
used directly to estimate the hydraulic properties and the
adjoint state method is employed to evaluate the associated
sensitivity matrices. For each drawdown measurement at a
given time, an associated adjoint equation must be solved
once. The adjoint equation for transient flow is a parabolic
equation [see Zhu and Yeh, 2005]. For each given time, the
solution to the adjoint equation must be obtained by a
backward time-marching scheme to derive the sensitivity
of drawdown with respect to a parameter. If the computa-
tional time step in the evaluation of the sensitivity is
assumed to be the same as the sampling interval (1 s), the
total number of times that the adjoint matrix equations need
to be solved for the 100 measurements will be 5050 (i.e., a
sum of the numbers from 1 to 100). Since drawdowns are
highly correlated in time, the number of drawdown mea-
surements used in the estimation can be reduced [Zhu and
Yeh, 2005]. Say, if only three samples at 40, 60, and 80 s
from the 100 measurements of the hydrograph are selected
for the sensitivity analysis, then the total number of times
the system equation for the arbitrary function needs to be
solved is reduced to 180.
[14] Now, suppose that we use the moment approach.

Instead of using the 3 transient drawdown measurements,
only the zeroth and first moments of the hydrograph are
needed. Subsequently, one only has to solve the adjoint
equation for the zeroth moment equation (A16) once and
then the two adjoint equations for first moment equation,
equation (A9) and equation (A10). That is, only three
system equations have to be solved for the sensitivity
analysis. Here, the example considers just one observation
well. As the number of observation wells increases, the
difference becomes even more significant. The temporal
moments approach thus is computationally efficient, com-
pared to the drawdown-time approach.
[1 5 ] Not ice tha t the zeroth-moment equat ion

(equation (10)) only depends on the hydraulic conductivity.
As a result, the influence of the specific storage is avoided
during estimation of the hydraulic conductivity even under
transient flow conditions.

3. Numerical Examples

[16] We created a 2-D heterogeneous confined aquifer to
compare computational cost between temporal moments
and transient heads approaches for the hydraulic tomogra-
phy analysis. Since temporal moments are integrated forms
of a well hydrograph, they may lose some information that
reflects effects of heterogeneity at different parts of an
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Figure 1. True synthetic fields: (a) transmissivity and (b) storage coefficient.

Figure 2. Estimated transmissivity fields using a sparse well field. (a) Using transient heads (case 1),
(b) using temporal moments (case 2), (c) the scatterplot of estimated versus true lnT fields of case 1, and
(d) the scatterplot of estimated versus true lnT field of case 2.
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aquifer as the cone of depression evolves. This loss of
information may be significant, especially since only the
first two moments are considered. Therefore we also inves-
tigated the impacts of information loss on our estimates of
hydraulic properties.
[17] The aquifer considered is 100 m long and 100 m

wide and is discretized into 2500 elements with a dimension
of 2 m by 2 m. The aquifer has spatially varying transmis-
sivity (T) and storage coefficient (S) fields. Both T and S
fields are generated by a spectral random field generator
[Gutjahr, 1989]. The geometric mean of the T field is
0.0035 m2/s and the variance of lnT for the field is 0.6.
Meanwhile, the geometric mean of the S field and its
variance in term of lnS are 0.00023 and 0.2, respectively.
The correlation scales for materials in both the x direction
and y direction are assumed to be 20 m. Figure 1 plots the
generated T and S fields. All boundaries of the aquifer as
well as its initial head distribution are assigned to be a
constant head of 100 m. Four cases are simulated. Case 1
involves nine wells uniformly distributed on a grid with the

distance between two adjacent wells 1.5 times the correla-
tion length of the aquifer properties (see Figure 2 for well
locations). This case represented a sparse monitoring net-
work. Nine pumping tests were sequentially simulated at
these wells with a pumping rate of 0.1 m3/s. The pumping
time for each pumping test lasted 50 s and then the pumping
stopped to allow a full recovery. During each pumping test,
head responses were obtained from the nine wells, and we
thus have 81 hydrographs after the hydraulic tomography
survey. According to Zhu and Yeh [2005], a few selected
transient heads in a hydrograph are needed to obtain
accurate estimates of hydraulic properties during hydraulic
tomography. On the basis of their findings we selected the
transient heads collected at 10, 30, 50, 70, 100, and 200 s to
estimate T and S simultaneously. These sampling times were
selected to capture the behaviors of the rising and falling
limbs of the hydrograph.
[18] The well field of case 1 was used in case 2 but zeroth

moments and characteristic times of the drawdown at the
nine wells due to nine sequential pumpings are used to

Figure 3. Estimated storage coefficient fields using a sparse well field. (a) Using transient heads
(case 1), (b) using temporal moments (case 2), (c) the scatterplot of estimated versus true lnS fields of
case 1, and (d) the scatterplot of estimated versus true lnS field of case 2.
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estimate T and S. Since determining the time to fully reach
recovery is difficult, calculating moments from the draw-
down-recovery curve could introduce some measurement
error. Introducing measurement errors could obscure the
comparison. Consequently, these moments in case 2 are
simulated directly from moment equations (10) and (12) for
this case. In practice, estimating moments from observed
hydrographs would inevitably involve some errors, but they
are difficult to quantify in a simple manner.
[19] An ‘‘optimal’’ monitoring network based on the

results by Yeh and Liu [2000] is considered in case 3. In
this case, 25 observation wells (see Figure 4 for well
locations) were added to the aquifer, which are distributed
with a distance (20 m) between two adjacent wells (i.e., one
correlation length). The pumping wells are the same as the
nine used in case 2. As a result, we had 25 well hydrographs
for each pumping test and a total of 225 well hydrographs
after the nine sequential pumping tests. Similar to case 1, we
selected the transient heads collected at 10, 30, 50, 70, 100,
and 200 s for estimating T and S. The corresponding

moment approach of case 3 is presented as case 4. Instead
of using the head data, 225 pairs of the zeroth moments and
characteristic times from the 25 wells were simulated for the
nine sequential pumping. Then, the moments were used in
the estimation. The four numerical cases were executed on a
PC-Cluster of 4 processors (Pentium 4, 2.8 GHz, 1G
memory each) platform. The simulation times for the four
cases were 423.8, 64.4, 766.1, and 179.2 min, respectively.
Figure 2 compares the estimated transmissivity fields of
case 1 and case 2. Comparison of the estimated storage
coefficient fields for these two cases is shown in Figure 3.
Estimated transmissivity fields of cases 3 and 4 are shown
in Figure 4, and Figure 5 compares estimated storage
coefficient fields for these two cases.

4. Results and Discussion

[20] Results of the 2-D synthetic case shows that case 2
(the moment approach) uses only 15.2% of the computation
time needed for case 1 (the head approach); likewise, case 4

Figure 4. Estimated transmissivity fields using a dense well field. (a) Using transient heads (case 3),
(b) using temporal moments (case 4), (c) the scatterplot of estimated versus true lnT fields of case 3, and
(d) the scatterplot of estimated versus true lnT field of case 4.
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(the moment approach) uses only 23.4% of the time needed
for case 3. These results substantiate our speculation about
the computational efficiency of the temporal moments
approach. In order to quantitatively compare the estimation
errors, we plot scatterplots of estimates versus true fields for
all four cases in Figures 2–5, along with mean absolute
error normal L1 and mean square error normal L2, which
are defined as

L1 ¼ 1

n

Xn
i¼1

ci 
 ĉij j and L2 ¼ 1

n

Xn
i¼1

ci 
 ĉið Þ2 ð21Þ

where ci and ĉi represent the true and estimates of the log-
transformed parameter (either lnT or lnS), respectively, i
indicates the element number, and n is the total number of
elements. According to Figures 2–5, the moment approach
based on the first two temporal moments of drawdown can
yield similar estimates of transmissivity and storage
coefficient fields as those based on transient heads. We

also test biasness of our estimations by calculating mean
and variance of estimation error, which are defined as

m ¼ 1

n

Xn
i¼1

ĉi 
 cið Þ and s2 ¼ 1

n

Xn
i¼1

ĉi 
 cið Þ 
 mð Þ2 ð22Þ

where m and s2 are mean and variance of difference between
true and estimated parameter (either lnT or lnS). The mean
and variance of estimation errors are list in Table 1. They
show that SSLE yields unbiased estimations in all cases. As
expected, a dense monitoring network can produce much
better results than a sparse network. It is clear however that

Figure 5. Estimated storage coefficient fields using a sparse well field. (a) Using transient heads
(case 3), (b) using temporal moments (case 4), (c) the scatterplot of estimated versus true lnS fields of
case 3, and (d) the scatterplot of estimated versus true lnS field of case 4.

Table 1. Mean and Variance of Estimation Errors

Case 1 Case 2 Case 3 Case 4

lnT lnS lnT lnS lnT lnS lnT lnS

Mean 0.1496 0.0756 0.1642 0.1360 0.0264 
0.0211 0.0499 
0.0124
Variance 0.2435 0.2563 0.1485 0.1575 0.1835 0.1962 0.1410 0.1918
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the results based on the temporal moments are not identical
to those based on the transient heads.
[21] The use of the dense and sparse monitoring networks

in the above synthetic cases is aimed at investigating the
impact of information loss in the moments approach on the
inverse results. Transient well hydrographs intuitively bear
signatures of the heterogeneity encountered by the drawdown
as the cone of depression evolves. These signatures, however,
are likely weak because the head recorded at an observation
well is highly correlated with different heterogeneities within
the cone of depression [Wu et al., 2005]. Because of the
integrative nature of the zeroth and first moments of a
hydrograph, these moments likely lose these signatures. We
therefore anticipate that the interpretation of a hydraulic
tomography survey using the temporal moments will yield
fewer details about the heterogeneity. Plots of estimated Tand
S fields and their associated scatterplots in Figures 2 and 3,
and statistics of the estimation errors in Table 1 seem to
support our hypothesis. The variances of the estimation errors
are consistently smaller for the estimated fields based on
drawdown than those based on temporal moments. On the
other hand, in cases 3 and 4 where the monitoring networks
are dense, the differences between the estimated fields based
on the two approaches are small. In other words, the infor-
mation loss in the temporal moments is largely compensated
for by the dense spatial information.
[22] The storage coefficient estimates from both transient

head and temporal moment approaches in both cases are
clearly less satisfactory than transmissivity estimates. This
may be attributed to the fact that high cross correlation
between head and storage coefficient is limited to a narrow
region in between pumping and observation wells; the cross
correlation between head and transmissivity on the other
hand is strong over the entire cone of depression at late time
[Wu et al., 2005].
[23] Notice that in all cases examined here, the temporal

moments at observation wells were directly obtained from
moment equations (10) and (12). Such a direct evaluation
has omitted possible errors in estimating the moments from
well hydrographs. Effects of errors in the moments on the
estimates of transmissivity and storage coefficient have
been studied by Li et al. [2005] during a single aquifer test.
According to their study, the effects are not significant.
Obviously, rigorous analysis of impacts of errors in
moments on hydraulic tomography is necessary but it is
beyond the scope of this paper.

5. Conclusions

[24] The temporal moment approach significantly reduces
computational cost for interpreting transient hydraulic to-
mography. The cost reduction is attributed to the fact that
the governing equations for the temporal moments are
Poisson’s equations. As a consequence, the forward mod-
eling required for improving new estimates of transmissivity
and storage coefficients does not have to solve the parabolic
equation that governs groundwater flow. The parabolic
equation in general has to be solved by a time marching
scheme, implying that a system of equations must be
evaluated at each time step. Avoiding solving the system
of equations for each time step thus reduces computational
efforts. Furthermore, the adjoint equations for evaluating

sensitivity matrices of temporal moments are also Poisson’s
equations. In our SSLE and some other inverse models, the
adjoint equations are solved for each measurement during
each iteration of the estimation process. Again, without
evaluating time-dependent adjoint equations, computational
burdens during evaluation of sensitivity are reduced. This
reduction is particularly significant when the number of
temporal and spatial observations is large.
[25] The temporal moment approach for interpreting

hydraulic tomography is unequivocally more efficient than
the approach using transient head data directly. The differ-
ences in results of the moment and head approaches are
small if a dense network is used. Furthermore, for the
situations where only hydraulic conductivity is of interest,
the zeroth temporal moment of transient well hydrograph
can be used to estimate transmissivity without involving the
estimation of the storage coefficient. This unique character-
istic of the temporal moment approach makes the approach
highly attractive for practical applications.

Appendix A: Derivation of Moment Sensitivities
Using the Adjoint State Method

[26] Differentiating the zeroth-moment equation,

r � K xð ÞrM0½ � þ Q xp
� �

t ¼ 0 ðA1Þ

with respect to a parameter c (where c represent lnK or lnS
at any location in the spatial domain W) give

@

@x

@K

@c
@M0

@x

� 	
þ @

@x
K
@f0

@x

� 	
¼ 0 ðA2Þ

where f0 = @M0/@c is called state sensitivity. Multiplying
the resultant equation by an arbitrary function, f*0, and
integrating the equation over the entire spatial domain, W,
givesZ

W

f0
*

@

@x

@K

@c
@M0

@x

� 	
þ f0

*
@

@x
K
@f0

@x

� 	� �
dW ¼ 0: ðA3Þ

Applying Green’s theorems to both terms of the left hand
side of equation (A3) yields the following equation,
Z
W


 @f0
*

@x

@K

@c
@M0

@x
þ f0

@

@x
K
@f0

*

@x

� 	� �
dW

þ
Z
G

f0
*
@K

@c
@M0

@x
þ f0

*K
@f0

@x

 f0K

@f0
*

@x

� �
� n dG ¼ 0 ðA4Þ

Applying a similar procedure to the first-moment equation,

r � K xð ÞrM1½ � þ Q xp
� � t2

2
þ SS xð ÞM0 ¼ 0; ðA5Þ

we obtain

Z
W


 @f1
*

@x

@K

@c
@M1

@x
þ f1

@

@x
K
@f1

*

@x

� 	�
þf1

*
@Ss
@c

M0 þ f1
*f0Ss

�
dW

þ
Z
G

f1
*
@K

@c
@M1

@x
þ f1

*K
@f1

@x

 f1K

@f1
*

@x

� �
� n dG ¼ 0 ðA6Þ
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where f*1 is another arbitrary function and f1 = @M1/@c
is another state sensitivity. The marginal sensitivity of a
performance measure P is given as

dP

dc
¼

Z
W

@G

@c
þ @G

@M0

f0 þ
@G

@M1

f1

� 	
dW ðA7Þ

where G is the state function. The first term in the right
side of equation (A7) represents direct dependence of
the performance measure on the parameter whereas the
second and third terms provide indirect dependence of
the performance measure on the parameter through
moments. Next, we add equation (A4) and equation (A6)
into equation (A7), yielding

dP

dc
¼
Z
W

@G

@c
þ @G

@M0

f0 þ f0

@

@x
K
@f0

*

@x

� 	�
þ f1

*f0Ss þ
@G

@M1

f1

þ f1

@

@x
K
@f1

*

@x

� 	

 @f0

*

@x

@K

@c
@M0

@x

 @f1

*

@x

@K

@c
@M1

@x

þ f1
*
@Ss
@c

M0

�
dWþ

Z
G

f0
*
@K

@c
@M0

@x
þ f0

*K
@f0

@x

�

f0K

@f0
*

@x

�

� n dGþ
Z
G

f1
*
@K

@c
@M1

@x
þ f1

*K
@f1

@x

�

f1K

@f1
*

@x

�
� n dG:

ðA8Þ

If we let the two arbitrary functions f*0 and f*1 satisfy the
following two adjoint equations:

@

@x
K
@f1

*

@x

� 	
þ @G

@M1

¼ 0 ðA9Þ

@

@x
K
@f0

*

@x

� 	
þ f1

*Ss þ
@G

@M0

¼ 0 ðA10Þ

and the boundary conditions

fn
* ¼ 0 at G1 ðA11Þ

Krfn
*ð Þ � n ¼ 0 at G2 n ¼ 0; 1ð Þ; ðA12Þ

The terms associating with state sensitivities f0 and f1

as well as boundary terms in equation (8) disappear.
Equation (A8) is reduced to

dP

dc
¼

Z
W

@G

@c

 @f0

*

@x

@K

@c
@M0

@x

�

 @f1

*

@x

@K

@c
@M1

@x
þ f1

*
@Ss
@c

M0

�
dW

ðA13Þ

If an observation of the moments is made at location, xk, the
state function becomes G = Mnd(x 
 xk) in which n = 0,
and 1, denoting the zero and the first moment, respec-
tively. Now, let G = M1d(x 
 xk) be the first moment at
location xk, the direct dependence term, @G/@c, becomes
zero. If K and Ss are uncorrelated, then the term, @Ss/@lnK

in equation (A13) is zero. As a result, we have the sensitivity
of M1

k with respect to ln K‘:

@Mk
1

@ lnK‘
¼

Z
W


 @f0
*

@x
K‘

@M0

@x

 @f1

*

@x
K‘

@M1

@x

� �
dW ðA14Þ

where the superscript k denotes the observation at location
xk and the subscript ‘ denotes the location of the parameter
in the domain. Similarly, the sensitivity of M1 to lnSS is
given as

@Mk
1

@ ln SS‘
¼

Z
W

f1
*M0Ss‘dW: ðA15Þ

Next, let G = M0d(x 
 xk) be the zeroth moment at
location xk, then term, @G/@M1, in equation (A9) is zero.
As a result, the solution f*1 of adjoint equation (A9) is
zero everywhere. The adjoint equation (A10) therefore is
reduced to

@

@x
K
@f0

*

@x

� 	
þ @G

@M0

¼ 0; ðA16Þ

and equation (A13) becomes

dP

dc
¼

Z
W

@G

@c

 @f0

*

@x

@K

@c
@M0

@x

� �
dW: ðA17Þ

The sensitivity of M0 to lnK is then given as

@Mk
0

@ lnK‘
¼

Z
W


 @f0
*

@x
K‘

@M0

@x
dW ðA18Þ
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